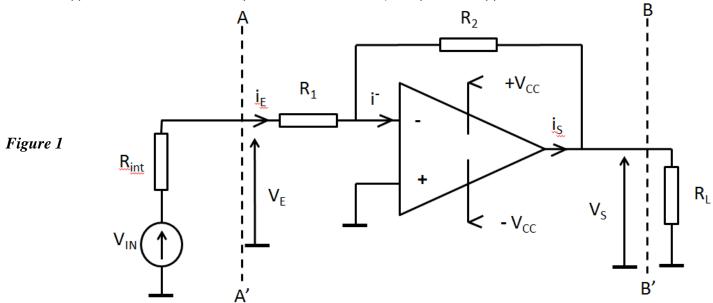


ENSICAEN 1^{ère} année Spécialité Electronique & Physique Appliquée


TD Electronique

Amplificateur de tension à base d'Amplificateur Opérationnel (AOP) non idéal

On supposera dans tout le problème que les tensions d'alimentation sont adaptées et permettent d'éviter toute saturation en sortie.

1° On considère le montage de la figure 1. On suppose pour cette question que R_{int} = 0. On souhaite que l'amplification $G_O = \frac{V_S}{V_{IN}}$ Go entre entrée et sortie soit de module égal à 50.

Dans l'hypothèse d'un AOP idéal, préciser la valeur requise pour le rapport R_2/R_1 .

2° Effet des courants d'entrée de l'AOP

Préciser les contraintes portant sur les valeurs de R_1 et/ou R_2 de manière à ce que l'effet du courant d'entrée i $^-$ puisse être négligé pour des valeurs de tension d'entrée comprises entre $20\mu V$ et 100mV.

Hypothèses :

On considère R_{int} =0 et R_L très élevé et sans effet sur la tension de sortie V_S . $\left(V^+ - V^-\right) = \epsilon = 0$ Application numérique: on donne $i^- = 1 n A$

3° Effet de l'impédance interne de la source

En pratique, l'impédance interne de la source 'est pas nulle. Préciser les contraintes sur R_1 et/ou R_2 pour que la prise en compte de R_{int} modifie le gain dans une proportion inférieure à 1%. Hypothèses:

On considère i négligeable, R_{int} =0 et R_L très élevé et sans effet sur la tension de sortie V_S . <u>Application numérique</u>: R_{int} = 50Ω

4° Effet de la limitation du courant de sortie de l'AOP

Le courant de sortie i_s de l'AOP est limité. On considère tout d'abord que la résistance de charge R_L est infinie.

5a . Quelles sont les contraintes sur R1 et/ou R2 induites par la limitation de i_s ? $\underline{\textit{Application numérique}}: i_s = 5 \text{ mA}, \text{ tension d'entrée comprise entre } 100 \mu\text{V} \text{ et } 100 \text{mV}$

5b. Dans l'hypothèse où R_2 est très élevée, préciser la valeur minimale de la charge R_L .

5° Schéma équivalent de l'étage de sortie

Les résistances R_L et R_2 étant convenablement choisies, on suppose que la tension de sortie ne dépend pas de R_L mais uniquement de $V_{\rm IN}$. Donner dans ce cas le schéma équivalent en sortie de ce montage à gauche du plan BB'.

6° Impédance d'entrée

Calculer l'impédance d'entrée du montage que l'on définit ici par : $Z_E = \frac{\partial Ve}{\partial i_{\circ}}$.

On suppose ε négligeable.

Donner un schéma équivalent en entrée du montage à droite du plan AA'. Retrouver la condition sur la valeur de la résistance R_1 de la question 3 pour que l'amplification ne dépende que très peu de R_{int} .

7° Donner le **schéma équivalent global** de l'amplificateur entre les plans AA' et BB'.

8° Effet de la bande passante limitée de l'AOP.

On considère i négligeable et R_{int}=0.

Le gain différentiel de l'AOP dépend en réalité de la fréquence selon un modèle simplifié :

$$V_{S} = A_{Do} \cdot \frac{1}{1 + jf/f_{O}} \cdot (V^{+} - V^{-})$$

Démontrer que le gain du montage dépend du coup lui aussi de la fréquence et que le produit 'Gain x Bande passante' de l'amplificateur est quasi constant et égal à $A_{Do} \times f_o$ pour $|G_O| >> 1$.

9° On souhaite réaliser un amplificateur dont le module du gain soit de 400 avec une bande passante de $250 \mathrm{kHz}$. Proposer une structure mettant en œuvre le montage de la figure 1 en donnant des valeurs possibles pour les résistances R1, R2. On suppose $A_{Do} \times f_o = 5 \mathrm{\ MHz}$

10° Effet de la température

On suppose que les résistances R_1 et R_2 sont de technologie commune de sorte de le terme $\frac{1}{R}.\frac{dR}{dT}$ est constant. Montrer que le gain du montage est alors indépendant de la température.