
2021-2022

Chapter 4

Microchip PIC18 
Architecture



2

MICROCHIP PIC18 MCUs

        

Market shares of silicon manufacturers and MCU suppliers in 2021.

Design Only

Manufacturing Only Technology used during labs



3

MICROCHIP PIC18 MCUs

        

The American company Microchip is an electronic device manufacturer. Most of its 
turnover (fr: chiffre d’affaires) is due to MCUs: about 60% come from the PIC family 
according to Microchip ESC Filing.

In 2016 Microchip bought Atmel, its major concurrent on the 8-bit MCU market.



4

MICROCHIP PIC18 MCUs

        

With its large range of MCU solutions, Microchip can win its clients loyalty by offering 
them the possibility to aim for various applications and markets.

Like many manufacturers, Microchip also supplies tools that make it easy to switch from 
a specific architecture to another (e.g. migration from PIC18 to PIC32).



5

MICROCHIP PIC18 MCUs

        

Central
Processing

Unit

Program & data 
memories

Peripherals



6

MICROCHIP PIC18 MCUs

        

PIC18C family 
(left)

PIC18F27/47K40 
(right)

Spot the 
differences!



CENTRAL PROCESSING UNIT



8

PIC18 CENTRAL PROCESSING UNIT

        Architecture

Just like the Atmel AVR, Microchip PIC18 follow a Harvard architecture: program and 
data memories are physically separated and their own addressing space are distinct.

PROGRAM MEMORY

DATA MEMORY

CPU
FETCH

DECODE
EXECUTE
WRITEBACK

16-bit INSTRUCTION BUS (read only)

8-bit DATA BUS (read/write)

21-bit ADDRESS BUS (write only)
 → 2²¹ = 2 MB address space

12-bit ADDRESS BUS (write only)
 → 2¹² = 4 kB address space



9

PIC18 CENTRAL PROCESSING UNIT

        Architecture

PIC18 CPUs are designed with a 2-stages hardware pipeline. They can decode-execute-
store an instruction while fetching the next one from the program memory.

Max performance of 16 MIPS.

PROGRAM MEMORY

DATA MEMORY

CPU
2-stage

hardware
pipeline

FETCH

DECODE
EXECUTE
WRITEBACK

16-bit INSTRUCTION BUS (read only)

8-bit DATA BUS (read/write)

21-bit ADDRESS BUS (write only)
 → 2²¹ = 2 MB address space

12-bit ADDRESS BUS (write only)
 → 2¹² = 4 kB address space

PC



10

PIC18 CENTRAL PROCESSING UNIT

        Architecture

Except in sleep mode, the CPU executes a constant flow of instructions coming out of 
the main memory. 

Some instructions ask the CPU to load or store a data from or to the data  memory.

PROGRAM MEMORY

DATA MEMORY

CPU
2-stage

hardware
pipeline

FETCH

DECODE
EXECUTE
WRITEBACK

16-bit INSTRUCTION BUS (read only)

8-bit DATA BUS (read/write)

21-bit ADDRESS BUS (write only)
 → 2²¹ = 2 MB address space

12-bit ADDRESS BUS (write only)
 → 2¹² = 4 kB address space

PC Binary instructions flow

Data flow



11

PIC18 CENTRAL PROCESSING UNIT

        Architecture

Let’s dive into the EXECUTION stage to see the PIC18 Execution Units (EUs).

As the PIC18 is a 8-bit MCU, the EUs can only operate on 8-bit integer values.

PROGRAM MEMORY

DATA MEMORY

CPU
2-stage

hardware
pipeline

FETCH

DECODE
EXECUTE
WRITEBACK

16-bit INSTRUCTION BUS (read only)

8-bit DATA BUS (read/write)

21-bit ADDRESS BUS (write only)
 → 2²¹ = 2 MB address space

12-bit ADDRESS BUS (write only)
 → 2¹² = 4 kB address space

PC



12

PIC18 CENTRAL PROCESSING UNIT

        Execution Unit: ALU

The Arithmetic and Logic Unit (ALU) is an execution unit in charge of arithmetic (+, -) 
and logic (&, |, ^, !, …) operations on 8-bit integer values.

Execution stage

8-bit WREG

W    f

W           f

statusALU

8-
b
it
 
DA
T
A 
B
US 0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

...

...

Opcode from 
decoding stage

Data memory
File registers

Arithmetic operations
ADDWF
INCF
SUBWF
DECF
...

Logic operations
ANDWF
IORWF
XORWF
CLRF
SETF
...



13

PIC18 CENTRAL PROCESSING UNIT

        Execution Unit: ALU

Any arithmetic or logic operation use by default a first 8-bit operand stored in the 
working register WREG and a second operand in the file register (data memory).

Example of an assembly language instruction and equivalent operation code (opcode).

Execution stage

8-bit WREG

W    f

W           f

statusALU

8-
b
it
 
DA
T
A 
B
US 0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

...

...

Opcode from 
decoding stage

PIC18 assembly language:
ADDWF f, d, a

16-bit opcode:
0010 01da ffff ffff

Data memory
File registers



14

PIC18 CENTRAL PROCESSING UNIT

        Execution Unit and Decoding Unit

Execution stage

8-bit WREG

W    f

W           f

statusALU

8
-b
i
t 
D
AT
A
 B
U
S 0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

...

...

Opcode from 
decoding stage

0010 01 d a ffff ffff
Opcode
Unique for each
instruction

Destination
d=0  Work register→
d=1  file register→

Access bank
a=0  Access bank→
a=1  All banks, BSR→

Source/Dest. address
8-bit,
Relative to a bank

A
LU

 c
on

tr
ol

M
U

X
 c

on
tr

ol

B
U

S 
co

nt
ro

l

PIC18 assembly language:
ADDWF f, d, a

16-bit opcode:
0010 01da ffff ffff

16-bit opcode:

Data memory
File registers



15

PIC18 CENTRAL PROCESSING UNIT

        Execution Unit: 8-bit x 8-bit integer multiplication

Execution stage

8-bit WREG

W    f

W           f

statusALU

8-
b
it
 
DA
T
A 
B
US

0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

...

...

Opcode from 
decoding stage

Data memory
File registers

PRODL

PRODH

0xFF3

0xFF4

0xFF2

Special function 
registers

0xFF5

PRODLPRODH

8x8-bit multiply

Numeration

uint8 * uint8 = uint16
 int8 *  int8 =  int15

PIC18 multiply operations

MULWF   (W-reg to F-reg)
MULLW   (Litteral to W-Reg)

C and asm example

static short foo;
foo = 3*7;

…
MOVLW 3
MULLW 7
MOVFF PRODL, <foo_L_12bit_address>
MOVFF PRODH, <foo_H_12bit_address>

       or
MOVFF 0xFF3, <foo_L_12bit_address>
MOVFF 0xFF4, <foo_H_12bit_address>

PRODL is an alias for 0xFF3, declared in a header
PRODH is an alias for 0xFF4, declared in a header



16

PIC18 CENTRAL PROCESSING UNIR

        PIC18 architecture

Central
Processing

Unit

Program & data 
memories

Peripherals



17

PIC18 CENTRAL PROCESSING UNIT

        PIC18F27/47K40 CPU architecture

PROGRAM MEMORY

DATA MEMORY

CPU
2-stage

hardware
pipeline

FETCH

DECODE
EXECUTE
WRITEBACK

16-bit 
INSTRUCTION BUS

8-bit
DATA BUS

21-bit 
ADDRESS BUS

12-bit
ADDRESS BUS

PC



18

PIC18 CENTRAL PROCESSING UNIT

        PIC18F27/47K40 CPU architecture

Find following items in this schematic

Flash memory

RAM memory

Buses

 program memory address bus
 data memory address bus
 data bus

Hardware pipeline stages

 Fetch
 Decode
 Execute (ALU, multiplier)
 Writeback

Program Counter register



19

PIC18 CENTRAL PROCESSING UNIT

        PIC18F27/47K40 CPU architecture

Now that you know how the PIC18 CPU is made, you shall adapt your programming 
habits.

This CPU (like most of low-power MCUs) does not have any Floating-Point Unit. 
Therefore you should avoid using floats and doubles, and use integers instead. 

Also as this MCU uses an 8-bit CPU you should use 8-bit integers (char C-type) as much 
as possible. They are usually large enough for control applications.

Finally you saw that the ALU performs simple operations. You should then avoid using 
advanced operators such as ‘/’, ‘%’, … 

C-Type       custom typedef    Memory space    Values
char  int8  8 bits / 1 byte   -128 / 127
unsigned char uint8  8 bits / 1 byte      0 / 255
short  int16 16 bits / 2 bytes -32768 / +32767
unsigned short uint16 16 bits / 2 bytes      0 / +65535
long  int32 32 bits / 4 bytes    -2G / +2G 
unsigned long uint32 32 bits / 4 bytes      0 / +4G
long long  int64 64 bits / 8 bytes    -9E / +9E
unsigned long long uint64 64 bits / 8 bytes      0 / +18E
int processor dependant      processor dependant
unsigned int processor dependant      processor dependant
float 32 bits / 4 bytes (PIC/XC8)
double 32 bits / 4 bytes (PIC/XC8)



MEMORY



21

MEMORY

        Program and data memory map

Program 
memory

Data 
memory

Size of program and 
data memories 
depends on the 
device



22

MEMORY

        PIC18F4550 program memory map

Program Counter (Fetch stage)

Hardware stack, max 31 nested function calls 
(saving return addresses)

Relocatable table of interrupt vectors 
(redirections from IRQ to ISR)

Memory space for the embedded firmware
(32 kB for the PIC18F4550 shown here)

Empty space depending on the device

Some PIC18 have up to 128 kB of program memory

Remaining space might be used for future evolutions



23

MEMORY

        PIC18F4550 data memory map

Data memory segmented in 16 banks of 256 bytes
(see next page for selecting the working bank)

GPR (General Purpose Register file)
Registers that can be used to store any data, 

available for use by all instructions.

2 kB data memory for this PIC18F4550
Up to 4kB for some other PIC18

SFR (Special Function Registers),
linked to CPU and peripherals registers



24

MEMORY

        Data memory: Bank selection

The data memory is segmented in 16 banks of 256 bytes. This is a typical construction 
on 8-bit architectures.

The working bank is selected by configuring four bits in the BSR (Bank Select Register).

Then instructions that use a file-register operand will access to the data with 8-bit direct addressing mode.

From the 16-bit opcode

PIC18 assembly language:
ADDWF f, d, a

16-bit opcode:
0010 01da ffff ffff

Bank select

PIC18 C language:
BSR = 0x02;

PIC18 assembly language:
MOVLW 0x02
MOVWF BSR



25

MEMORY

        Data memory: Special Function Registers (SFR)

The SFR bank is a part of the RAM 
data memory where CPU and 
peripheral registers are mapped.

It means registers are physically 
outside of the memory but they 
are accessible with a memory 
address.

Core memory mapped registers

Peripheral specialised functions 
memory mapped registers



26

MEMORY

        Data memory: Access bank

When executing an operation that uses direct addressing, 
the execution stage checks the <a> field (access bank):

 ADDWF f, d, a      <a> = ‘0’ or ‘1’

If <a> = ‘0’ the CPU only sees the access bank (top half 
of the bank #0 + SFR bank). The 4 most significant bits 
of the 12-bit data memory address come from the access 
bank register (0x0 or 0xF)  Fast solution→ . 

If <a> = ‘1’ the CPU can access to all the data memory. It 
uses the value of the BSR (Bank Select Register) to 
generate the 4 most significant bits of the 12-bit data 
memory address.



27

MEMORY

        Data memory

Find following items in this schematic

Data memory

BSR (Bank Select Register)

Access bank register

Note how they are placed relatively to each 
other and how the 12-bit data memory 
address is built.



28

MEMORY

        PIC18 architecture

Central
Processing

Unit

Program & data 
memories

Peripherals



PERIPHERALS



30

PERIPHERALS

        Definition

A peripheral is a hardware function that can 
be used to perform specific calculus and/or 
process some operation while letting the 
CPU performing something else.

For all MCUs, peripherals are physically 
connected to the data bus and their internal 
registers are mapped to the data memory.

From the program point of view, accessing to 
a register (read or write) is the same as 
accessing to a data memory cell.

Example of PIC18F27/47K40 CPU and peripherals.



31

PERIPHERALS

        Hardware functions Peripherals, 
guess what they do!

This lecture does not contain any material for using each 
peripheral. To know what is the role of a peripheral and how 
to configure it, the best material is the device datasheet.



32

PERIPHERALS

        Configuration, activation, use

When the processor starts (after power-on or reset), no peripheral function is 
configured nor activated.

The programmer must explicitly configure and activate hardware services that are 
needed for the application. Only then the peripherals can be used.

Most of peripherals have configuration registers that must be set once in addition to 
working registers that contains updated values.

Start

Configurations

Use

void main()
{

// Peripherals configurations 
// and other initialisation
…

while(1) {
// Main routine and peripherals use
…

}
}



33

PERIPHERALS

        I/O ports

A port is a group of 8 pins or GPIOs (General Purpose Input/Output). 

They can be used as independent digital inputs and/or outputs. The PIC18F27K40 has 5 
ports (port A to port E), which makes 40 independent GPIOs available.



34

PERIPHERALS

        I/O ports

Example of GPIO (General Purpose Input/Output) on the Curiosity HPC board.

First the RA4 pin is configured as an output, then the output value is set to ‘high’. This 
will turn on the LED D2 on this pin.

PIC18 C program

//Set RA4 as an output
TRISA = 0xEF;

//Set RA4 to high level
LATD = 0x10;

PIC18 assembly program

;Set RA4 as an output
MOVLW    0xEF
MOVWF    TRISA

;Set RA4 to high level
MOVLW    0x10
MOVWF    LATA

RA4  = pin 4 of port A (also bit 4 of registers associated to port A).
TRISx = register that contains the direction of the 8 pins of the port x (‘0’ = Output, ‘1’ = Input).
LATx  = register that contains the output value for pins configured as outputs in port x.



35

PERIPHERALS

        Input/output interfaces

MCUs usually have more peripherals than they can really handle. 

In fact, many peripherals are connected to the same pins. This implies that some 
peripherals cannot be used at the very same time.

DIP package TQFP package QFN package



36

PERIPHERALS

        Input/output interfaces

As many input and output pins can be used by several peripherals, connections 
between pins and peripherals must be set using the Peripheral Pin Select (PPS) module.

Input pin 
redirections

Peripheral 
outputs 
redirections



37

PERIPHERALS

        Reference clock module

Like all other MCUs, the PIC18 family offers configuration and system hardening 
services.

“Hardening” an application consists in making it less sensitive to its environment 
(power supply fluctuations, …) or even handle unexpected situations (watchdog, …).

Any program on PIC18 must start with this configuration:

 /* CPU specific features configuration */

 #pragma config PLLDIV=2, CPUDIV=OSC1_PLL2, FOSC=HSPLL_HS

 #pragma config BOR=OFF, WDT=OFF, MCLRE=ON, LVP = OFF



38

PERIPHERALS

        Reference clock module

External clock
(e.g. 8 MHz cristal)

#pragma config 
PLLDIV=2, 
CPUDIV=OSC1_PLL2, 
FOSC=HSPLL_HS



39

PERIPHERALS

        Watchdog

The watchdog is an application agent. 

In normal circumstances, the application resets the watchdog timer at regular intervals.

When the application remains stuck for a long time, the watchdog timer is not reset 
and will eventually overflow. The watchdog will force the application to reboot by 
resetting the CPU.



INTERRUPTS

Event

Interrupt Flag (IF)

Interrupt Request (IRQ)

Interrupt Service Routine (ISR)



41

INTERRUPTS

        Interrupt flag

Once a peripheral has been configured, it becomes autonomous.

When its job is done (counting, converting, …) or when a special event occurs 
(message received, switch pressed, …), the peripheral will raise a Interrupt Flag (IF). 

A interrupt flag is a bit in a register, each flag corresponding to a precise event.



42

INTERRUPTS

        Interrupt Service Routine (ISR)

However some events require immediate attention. Plus, using interrupt flags the same 
way as classical variables (e.g. testing them in “if” statements) is inefficient.

That is why an interrupt mechanism has been designed. This is the hardware way of 
stopping the normal execution flow of the CPU. It will then switch to the execution of a 
function dedicated to the event: the ISR (Interrupt Service Routine). 

// Doing the classical way

main() {

// do something
...
...
...
...
while(1){

if( event_A )
...
if( event_B )
...
if( event_C )

}
}

Event C 
occurs here

Event C is 
processed here

// Using interrupt mechanism

void event_A_ISR()
{ ... }

void event_B_ISR()
{ ... }

void event_C_ISR()
{ ... }

main() {
// do something
...
...
...
...

}

Immediate 
processingEvent C 

occurs here
Main program 
execution is paused



43

INTERRUPTS

        Interrupt Request (IRQ)

All interrupts are disabled by default: it is the programmer work to decide and explicitly 
tell which event is worthy enough to lead to an interrupt.

To do so, the programmer must configure the Interrupt controller. 

This circuit will turn selected interrupt flags into Interrupt Requests (IRQ), that will 
cause the CPU to stop its current work.

GPIO

UART

ADC

Timer

Interrupt 
Flag

Physical 
event

Physical 
event

Physical 
event

Internal 
event

Peripherals Interrupt Controller

Interrupt 
Flag

Interrupt 
Flag

Interrupt 
Flag

Disabled

CPU

Interrupt 
Request

Interrupt 
Request

Enabled

Enabled

Enabled

Interrupt flag
Bit in a register that indicates that an event 
has occurred.

Interrupt request
Physical wire connected to the CPU that 
makes it switch to another function.

Notes
Many interrupt flags can be linked onto the 
same IRQ signal.
A specific IRQ corresponds to a specific ISR.



44

INTERRUPTS

        Interrupt controller

The interrupt controller consists of AND and OR gates. This circuitry independently let 
or prevent interrupt flags becoming interrupt requests.

To do so, one must configure the registers of the interrupt controller. Like the PIC18, 
most MCUs need to configure three bits for each interrupt:

the Interrupt Flag (IF) bit, the Interrupt Enable (IE) bit, the Interrupt Priority (IP) bit.

Timer 0
Event

Peripherals Interrupt Controller

CPU

High-priority
IRQ

Low-priority
IRQ

TMR0IF

TMR0IE
TMR0IP

TMR0IE
TMR0IP

?

?

PIR0 to PIR7 registers
Contain the individual flag (IF) bits.

PIE0 to PIE7
Contain the individual enable (IE) bits.

IPR0 to IPR7
Contain the individual priority (IP) bits.



45

INTERRUPTS

        Interrupt controller

After configuring the interrupt controller for every single interrupt source, one last 
parameter should allow the CPU to see IRQ signals.

Most MCUs have a Global Interrupt Enable (GIE) bit to do so. The PIC18 has two of 
them: GIEH and GIEL for respectively high- and low-priority interrupts.

Timer 0

GIEH

Event

Peripherals Interrupt Controller

CPU

High-priority
IRQ

Low-priority
IRQGIEH

GIEL

TMR0IF

TMR0IE
TMR0IP

TMR0IE
TMR0IP

INTCON registers
Contain enable and priority bits.



46

INTERRUPTS

        Interrupt controller: PIC18F27/47K40 interrupt controller logic

Interrupt Flag bit
Interrupt Enable bit

Interrupt Priority bit

One gate for each 
interrupt source

(controlled through 
several registers)

Several interrupt 
sources can merge 
into a single IRQ

Several interrupt 
sources can merge 
into a single IRQ

Global Interrupt
Enable bits

Circuitry has been 
duplicated to handle both 

high- and low-priority 
interrupts

Priority
management

Three distinct IRQs 
can be generated :
-   Reset
-   High-priority
-   Low-priority



47

INTERRUPTS

        Interrupt Service Routine (ISR)

Interrupt Service Routines (ISR) are functions called by the Interrupt vectors, which 
are specific parts of the Flash memory.

When the CPU sees an Interrupt Request (IRQ), it pauses its main program and 
branches automatically to the corresponding interrupt vector, causing the execution of 
the Interrupt Service Routine.

GPIO

UART

ADC

Timer

Interrupt 
Flag

Physical 
event

Physical 
event

Physical 
event

Internal 
event

Peripherals Interrupt Controller

Interrupt 
Flag

Interrupt 
Flag

Interrupt 
Flag

Disabled

CPU
Interrupt 
Request

Interrupt 
Request

Enabled

Enabled

Enabled

Program
memory

Int. Vector

Int. Vector

Program
Counter



48

INTERRUPTS

        Interrupt Service Routine (ISR)

ISRs are not proper functions: they should not be called from the main program. 

They are automatically called whenever the CPU sees the IRQ signals (this is called 
“event-driven programming”, fr: programmation évènementielle)

As ISRs are called at unpredictable moments, it is not possible to pass arguments to the 
ISR functions. 

In order to exchange information between the main program and the ISRs, global 
variables can be used. 

But remember global variables are shared resources and be used very carefully!



49

INTERRUPTS

        Interrupt Service Routine (ISR)

Here is an example of how writing an ISR using the Microchip XC8 toolchain.
 /*  ISR - high level Interrupt Service Routine  */
void interrupt high_priority high_isr(void) {  
  
     if( PIR0bits.TMR0IF ) {        
          PIR0bits.TMR0IF = 0;  
          ...
     } 
 
     if( PIR1bits.ADIF ) {        
          PIR1bits.ADIF = 0;  
          ...
     }
}

/* program entry point */
void main(void) {     

     timer0_init();
     interrupt_enable();

     while(1) {
          /* user application scheduler */
     }
}

Configure interrupt for Timer 0

Enable interrupt for the CPU

Main routine (main application function)

ISR for all high-priority interrupt sources 

Check if Timer 0 is the source of this interrupt

Check if ADC is the source of this interrupt

Clear the Timer 0 interrupt flag, and proceed to what it should do

Clear the ADC interrupt flag, then proceed to what it should do



50

INTERRUPTS

        Interrupt vector

Interrupt vectors are very small areas in the Flash memory.

 → 16 bytes for the high-priority interrupt vector

 → 2 bytes for the low-priority interrupt vector

In fact, those areas are too small to contain the ISR but they 
are large enough to contain CALL or GOTO instructions, which 
will actually call the ISR (see next page).

Technically ISR are stored in the program memory, but they 
should be accessed only through interrupt vectors. 



51

INTERRUPTS

        Context switch

As an ISR can be called at anytime, it will break the context that the main program is 
using (values of W-reg, STATUS, BSR for the PIC18). All registers must be saved in order 
to return to prior values when the ISR has ended. 

The PIC18 toolchain will usually implement a hardware context backup for the high-
priority ISR and a software context backup for the low-priority ISR.

Hardware context backup
(CPU shadow registers)

high_vector:
CALL high_isr, 1

high_isr:
; user program - ISR processing
RETFIE 1

Hardware context backup
(Flash memory)

low_vector:
GOTO   low_isr

low_isr:
MOVWF   wreg_tmp
MOVFF   STATUS,     status_tmp
MOVFF   BSR,        bsr_tmp
; user program - ISR processing
MOVFF   bsr_tmp,    BSR
MOVFF   status_tmp, STATUS
MOVF   wreg_tmp,   W
RETFIE



52

INTERRUPTS

        Summary

GPIO

UART

ADC

Timer

Interrupt 
Flag

Physical 
event

Physical 
event

Physical 
event

Internal 
event

Peripherals Interrupt Controller

Interrupt 
Flag

Interrupt 
Flag

Interrupt 
Flag

Disabled

CPU

Interrupt 
Request

Interrupt 
Request

Enabled

Enabled

Enabled

Program
Memory

Int. Vector

Int. Vector

PC

IE bits for each int. source
One GIE bit for the CPU

main()

ISR()

Assistant
referee

Player is 
offside Raises 

Flag Referee Player
Blow the 
whistle

Stops

run()

yell()



53

INTERRUPTS

        PIC18 architecture

Central
Processing

Unit

Program & data 
memories

Peripherals

Flags
IRQs



CONTACT

Dimitri Boudier – PRAG ENSICAEN

dimitri.boudier@ensicaen.fr 

With the precious help of:
● Hugo Descoubes (PRAG ENSICAEN)
● Bogdan Cretu (MCF ENSICAEN)

mailto:dimitri.boudier@ensicaen.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

