Microchip PIC18
Architecture

ECOLE PUBLIQUE D’INGENIEURS
EEEEEEEEEEEEEEEEE

2021-2022

MICROCHIP PIC18 MCUs

Market shares of silicon manufacturers and MCU suppliersin 2021.

2Q21 Top 10 Semiconductor Sales Leaders (SM, Including Foundries)

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

Leading MCU Suppliers (SM)

2021 {1021 Company :He adquarters 1Q21 !rgtz:; 11.:::' 2Q21 ?roatza: 2021 j2qQ21/1Q21 2021 Company Headquarters 2020 2021 21/20 2021
Rank |Rank _ TotalIC | o o | comi | 1€ | gg.p |Total Semi| 5 Change Rank % Chg Marketshare
1 2 [Samsung South Korea | 16,152 | 920 | 17,072 | 19,262 | 1,035 | 20,297 19% 1 NXP Europe 2,900 3,795 27% 18.8%
2 1 |intel us. 18,676 | 0 | 18,676 | 19,304 0 19,304 3% 2 Microchip u.s. 2,872 3,584 25% 17.8%
3 3 |Tsmc(1) Taiwan 12,911 (i] 12,911 | 13,315 0 13,315 3%
4 | 4 |sKHynix SouthKorea | 7,270 | 358 | 7628 | 8762 | as1 | 9213 21% 3 Renesas Japan 2,748 3,420 24% 17.0%
5 5 | Micron us. 6,629 0 6,629 7,681 0 7,681 16% 4 ST Europe 2,506 3,374 35% 16.7%
6 | 6 |Qualcomm (2) Us. 6,281 0 | 6281 | 6472 0 6,472 3%
7 8 |Nvidia(2) us. 4,842 0 4,842 5,540 0 5,540 14% 5 Infineon Eumpe 1,953 2,.373 22% 11.8%
8 | 7 |Broadcominc.(2) US. 4364 | ass | 4,849 | 4400 | 490 | 4,800 1% y :
9 | 10 |MediaTek(2) Taiwan | 3849 | o | 3849 | 4496 | o | 449 17% Souge: Comaanyrenceiss il Instkhes
' e T T T T T T

Source: ComBany reports, IC Insights’ Strategic Reviews database

Design Only

Manufacturing Only

e\

MICROCHIP

Technology used during labs

MICROCHIP PIC18 MCUs SE=zzsiist

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

The American company Microchip is an electronic device manufacturer. Most of its

turnover (fr: chiffre d'affaires) is due to MCUs: about 60% come from the PIC fFamily
according to Microchip ESC Filing.

In 2016 Microchip bought Atmel, its major concurrent on the 8-bit MCU market.

: PIC® MCU

1985 1990 1999 2010 2013
FCCPU First Microchin 1 Billion PIC Intreduction of PIC MCU Core Maora than 12 Billion
Imention MCUIntroduction MCUs shipped Independent Peripharals PIC MeCUs shipped

MICROCHIP

2016

Creation of 8-bit
MCU Powerhouse

1992 1997 2003 2007 2015
AR CPU First ANR MCL 500 Million AVR Introduction of AVR Mara than 7 Billion

1 l l ® Invention Introduction MCUs shipped MCU Event System AVR MCUs shipped

MICROCHIP PIC18 MCUs

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

With its large range of MCU solutions, Microchip can win its clients loyalty by offering
them the possibility to aim for various applications and markets.

Like many manufacturers, Microchip also supplies tools that make it easy to switch from
a specific architecture to another (e.g. migration from PIC18 to PIC32).

Scaling the PIC® MCU & dsPIC® DSC Families

Mouse over and click on each
product family to learn more . ——

PIC32
 m—.
dsPIC33

s
dsPIC30
—

PIC24H
..

. PIC24F

Vo

>
=
=
=
(@]
=
9]
=
3
=

"= _

Performance

MICROCHIP PIC18 MCUs

Program & data
memories

Central
Processing
Unit

@ MICROCHIP

Up to 128 KB Up to 4 KB

Flash RAM

Memory Bus

PIC18F Core
16 MIPS
1.8 to 5.5V

- Register File
8-bit ALU 8-bit

8x8 2 MB Address
Multiplier Space

Upto1KB
EEPROM

Interrupt
| Control

p—

sng |esaydiiad

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Peripherals

MICROCHIP PIC18 MCUs

DataBug<8> — — — — — — — — 9 i Data Bus
able Painter<21
= ' Spotthe : 1117 =
- RA1 } s Vs o
2 e p?me'{m Daa Lakh RA2 ! . ' ‘ incidec logic | ECOLE PUBLIQUE D'INGENIEURS
Data RAM RA3 | d FF Data Memory CENTRE DE RECHERCHE
RA4
Moo AR w 1 differences! -
feklress Lach I . 1 20 AddressLaich | PORTA
Address Laich 9 | I RAST:0>
Program Memory. RBOANTO Program Counter 12
| RE1/INT1]
(upto 20 Byes) RE2NT2 Daia Address<12>
Data Latch | RB3 | Fi-Level Stack
| Rt | Address Laich
Program Memory [STKPTR |
| | [5’;?3254 Kbytes)) PORTS
| ' —>
I I Data Latch | RB<7 0=
| |
| | Tabis Laih
J | |
| | { ROM Latch
Register Bus <16>
| | PORTC
Bacoda s | RC<7:0>
Gontrol | |
OSC2/CLKOUT | AR I S
OSC1/GLKIN F— a e Instruction [State machine
=] Timer | T —4 REQ | Decode and |7 control signals
Timing 8 RE1 Control
}}3@‘0 k= Ganeration Oscillator |] RE2 I
\Stant-up Timer| 8 P e
o g RE3 | OR
Powar-on . +—= | RE4 RD<7:0>
Resel | s RES |
AXPLL Watchdog | 1 :Eg]
Timer | — |
;:?d&mn Brown-out 8 -
)
JBandoap Reset e | . | osci® ——»| C;:}:*’;Ifg?n‘r P "
- I Block Tmer PORTE
| . | 05G22 ——»| < Oscillator o
MCLR Voo, Vs - LFINTOSC Start-up Timer, =P RE<2:0~
I - | S0SCI » || Oscillator Power-on B RE3(
[| 84 MHz Reset
| | S0SCO —#{| Oscilator Watchdag
Timer
| . PIC18C famil ‘ et I Iy
] | [Single-Supply Band Gap
L | a | y WO Programmin Reset Reference
" In-Circuft Fai-Safe
| | (le Ft) Debugger Clock Menitar
| |
L
F— = — - - —_- — — — — — — — — — — = — — — —_ BOR NVM Timer1 Timer2 FVR
- TimerD || Timer3 || Timer4 ZCD ||[CRC-Scan) DAC
I AJD Comverter HLVD | |Contraller| Timers || Timee§
| PIC18F27/47K40 £ S S . S S ¥
| Paripharals
! v 6,,,‘ & 1 h t h 4 v h 4 A 4 y A4 A4 * v
| | [] oz rig e
| CCPs Eann Port a\?camparatm CCP1 || PWM3 mgg; EHE:QE Ecws || Dsm PMD 11:;33 VR
L Peripheral Modules (Mote 1) . 2 c1icz CCPZ || PWM4 i

CENTRAL PROCESSING UNIT

PIC18 CENTRAL PROCESSING UNIT ==22222EC

Architecture
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Just like the Atmel AVR, Microchip PIC18 follow a Harvard architecture: program and
data memories are physically separated and their own addressing space are distinct.

21-bit ADDRESS BUS (write only)

— 221 = 2 MB address space 16-bit INSTRUCTION BUS (read only)

12-bit ADDRESS BUS (write only)
— 212=4 kB address space

I 8-bit DATA BUS (read/write)

PIC18 CENTRAL PROCESSING UNIT S==SZEssES

Architecture
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

PIC18 CPUs are designed with a ?-stages hardware pipeline. They can decode-execute-
store an instruction while fetching the next one from the program memory.

Max performance of 16 MIPS.

21-bit ADDRESS BUS (write only)

— 221 = 2 MB address space 16-bit INSTRUCTION BUS (read only)

12-bit ADDRESS BUS (write only)
— 212=4 kB address space

I 8-bit DATA BUS (read/write)

PIC18 CENTRAL PROCESSING UNIT ==22222EC

Architecture
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Except in sleep mode, the CPU executes a constant flow of instructions coming out of
the main memory.

Some instructions ask the CPU to load or store a data from or to the data memory.

21-bit ADDRESS BUS (write only)

— 221= 2 MB address space 16-b|t{NSTRUCTION BUS (read only)

I 8-bit DATA BUS (read/write)

Data flow

12-bit ADDRESS BUS (write only)
— 212=4 kB address space

10

PIC18 CENTRAL PROCESSING UNIT ==22222EC

Architecture ENSI
CAEN
Let's dive into the EXECUTION stage to see the PIC18 Execution Units (EUs).
As the PIC18 is a 8-bit MCU, the EUs can only operate on 8-bit integer values.
2_:-;2i1t:Agl?\;2§SanBdUrSe(sv;ristpe aocnely) 16-bit INSTRUCTION BUS (read only)
E';izt fg?(%iﬁg:;gg:gg 2 8-bit DATA BUS (read/write)
11

Execution Unit: ALU ENSI
CAEN
The is an execution unit in charge of arithmetic (+, -)

and logic (&, |, #, !, ...) operations on 8-bit integer values.

File registers

Opcode from
decoding stage

8-bit DATA BUS

8-bit WREG |

Execution Unit: ALU EN |

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Any arithmetic or logic operation use by default a first 8-bit operand stored in the
working register WREG and a second operand in the file register (data memory).

Example of an assembly language instruction and equivalent operation code (opcode).

File registers

Opcode from
decoding stage

8-bit DATA BUS

8-bit WREG |

PIC18 CENTRAL PROCESSING UNIT S=2S2222=C
Execution Unit and Decoding Unit EN I

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

PIC18 assembly language:
ADDWF f, d, a

File registers

16-bit opcode: Opcode.from
0010 01da ffff ffff decoding stage

8-bit DATA BUS

8-bit WREG

PIC18 CENTRAL PROCESSING UNIT

Execution Unit: 8-bit x 8-bit integer multiplication

Numeration

uintile
int15

uint8 * uint8
int8 * 1int8

PIC18 multiply operations Opcode from
decoding stage

MULWF (W-reg to F-reg)
MULLW (Litteral to W-Reg)

C and asm example

static short foo; 8-bit WREG

foo = 3*7;

MOVLW 3

MULLW 7

MOVFF PRODL, <foo_L_12bit_address> _[-8 .

MOVFF PRODH, <foo_H_12bit_address> 8x8-bit mu"tlply
or PRODH PRODL

MOVFF OxFF3, <foo_L_12bit_address>

MOVFF OxFF4, <foo_H_12bit_address>

(%)
2
[aa]
<
'—
<
[}
e}
o~
0
1
[o0]

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

File registers

Special function

registers

OxFF2

OXFF3

OxFF4

OXFF5

PIC18 CENTRAL PROCESSING UNIR
PIC18 architecture

@ MICROCHIP

Program & data Up to 128 KB Up to 4 KB
memories A e

Memory Bus

Central
. PIC18F Core
Processmg 16 MIPS
Unit 1.8 to 5.5V

- Register File
8-bit ALU 8-bit

8x8 2 MB Address
Multiplier Space

Upto1KB
EEPROM

Interrupt
| Control

p—

sng |esaydiiad

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Peripherals

PIC18 CENTRAL PROCESSING UNIT
PIC18F27/47K40 CPU architecture

21-bit
ADDRESS BUS

12-bit
ADDRESS BUS

16-bit

8-bit
DATA BUS

INSTRUCTION BUS

Data Bus<8>

[Table Pointer<21>| |«

Instruction Bus <16>

: a8 Data Latch
[inc/dec logic |
Data Memory
2 PCLATU|PCLATH
20 Address Latch
Program Counter f—m
Data Address<12>
[31-Level Stack]
Address Latch
Program Memoary iQ_STKPTR
(8/16/32/64 Kbytes)

Table Latch

Instruction * State machine

Decode and control signals
Control
2) » Internal
0SC1 Oscillator Pc.ltver—up
Block fmer
0sc2@ —p <> Oscillat}r
LFINTOSC Start-up Timer|
soscl —¢ Oscillator Power-on
Reset
64 MHz
SOSCO ——p{|| Oscillator Watchdog
Timer
. B n Precision FVR
MCLRM —p |Single-Supply HOWII-O Band Gap ——p
Programming Rleset Reference
In-Circuit Fail-Safe
Debugger Clock Monitor

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

17

Data Bus<8>

IR — -
PIC18 CENTRAL PROCESSING UNIT o

PIC18F27/47K40 CPU architecture

—— ENSI
C

Address Latch

PCLATU PCLATH!

Program Counter

ECOLE PUBLIQUE D'INGENIEURS
12 CENTRE DE RECHERCHE

Find Following items in this schematic

Flash memory
RAM memory

Buses

program memory address bus
data memory address bus
data bus

Hardware pipeline stages

Fetch

Decode

Execute (ALU, multiplier)
Writeback

Program Counter register

[31LevelStack |

Address Latch

Program Memory
(BM6/32/64 Kbytes)

Data Latch

Instruction Bus <16>

STKPTR

Table Latch

Data Address<12=>

Control

Instruction
Decode and

* State machine
control signals

0sC11d —p
0sc2@ —p

soscl]
SOSCO —P

MCLR ——¥

Internal
Oscillator Power-up
Block Timer
4> Oscillapr
LFINTOSC Start-up Timer,
Oscillator Power-on
Reset
64 MHz
Oscillator Watchdog
Timer
Single-Supply Brown-out —
Programming Reset
In-Circuit Fail-Safe
Debugger Clock Monitor

Precision FVR

Band Gap ———p

Reference

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Now that you know how the PIC18 CPU is made, you shall adapt your programming
habits.

This CPU (like most of low-power MCUs) does not have any Floating-Point Unit.
Therefore you should , and use integers instead.

Also as this MCU uses an 8-bit CPU as much
as possible. They are usually large enough for control applications.

Finally you saw that the ALU performs simple operations. You should then
suchas '/, "%, ...

MEMORY

ECOLE PUBLIQUE D’'INGENIEURS
CENTRE DE RECHERCHE

MEMORY

Program and data memory map

=

PIC18{L)Fx4K40 | PIC18(L)F25/45K40 | PIC18(L)

FG65K40 | PIC1B(L)Fx6KA0 | PIC18(L)Fx7K40

Note1 |

Stack (31 Levels)

.~

00 0000h

Reset Vecor

00 0008h

Interrupt Vecor High

00 0018h

Interrupt Vecor Low

00 001Ah
to
00 3FFFh

Program Flash
Memory
(8 KW)

00 4000h
to
00 7FFFh

Program

<

00 8000h
to

00 FFFFh

memory

010000
to
01 FFFFh

02 0000h
to
1F FFFFh

Not
Present™®

Pregram Flash
Memory
(16 KW)

Program Flash
Memory
(16 KW)

Not
Present?

Not
Present?

Program Flash
Memory
(32 Kw)

Mot
Present?

Program Flash
Memory
(B4 KW)

Not
Present®

20 0000h
to
20 000Fh

User IDs (8 Words)™!

200010h
to

2F FFFFh

Reserved

Data
memory

30 0000h
to
30 000Bh

Configuration Words (6 Wcrds)“’

30 000Ch
to
30 FFFFh

Reserved

310000h
to

31 00FFh

Data EEPROM (256 Bytes)

310100h
to
31 01FFh

Unimplementad

Data EEPROM (1024 Bytes)

30 000Ch
to
30 FFFFh

Reserved

3F FFFCh
to
3F FFFDh

Revision ID {1 Word)"!

3F FFFER
to
3F FFFFh

Device ID (1 Word)"

ENSI
CAEN

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

Size of program and
data memories
depends on the

device

Program Counter (Fetch stage)

Hardware stack, max 31 nested function calls
(saving return addresses)

Relocatable table of interrupt vectors
(redirections from IRQ to ISR)

(32 kB for the PIC18F4550 shown here)

Empty space depending on the device
Some PIC18 have up to 128 kB of program memory

Remaining space might be used for future evolutions

PC<20.0>

21

Stack Level 1

Stack Level 31

Reset Vector

High Priority Interrupt Vector

Low Priority Interrupt Vector

On-Chip
Program Memory

Read ‘0’

0000h
0008h
0018h

7FFFh
8000h

User Memory Space

1FFFFFh
2000000

I

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

MEMORY SESSERSES
PIC18F4550 data memory map

Data Memory Map

; 00n [Access 05Fh e e s
Data memory segmented in 16 banks of 256 bytes o | R
(see next page for selecting the working bank) e
1 -3
Bank 2 GPR \
FFh 2FFh \
Bank 3 i GPR e \
FFh 3FFh
. Bank 4 oon cpri! o \'\
Registers that can be used to store any data, e e \
available For use by all instructions. e \\
00h 600h
i EEh PR GEED \\ Access Bank
Bank 7 o GPRHJ La ¥ Access RAM Low 22:
FFh TFFh _A(;ess_Rm H_igh_ 60h
00h 800n /4 (SFRs) FFh

2 kB data memory for this PIC18F4550 Bank & /

Unused /
Up to 4kB for some other PIC18 o Read as 00N /
Bank 14 ;/
/
! EE:: Unused Egézp': / .IJ
linked to CPU and peripherals registers e P

MEMORY §sEssssss:
Data memory: Bank selection
/ CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

The data memory is segmented in 16 banks of 256 bytes. This is a typical construction
on 8-bit architectures.

The working bank is selected by configuring four bits in the BSR (Bank Select Register).

Then instructions that use a file-register operand will access to the data with 8-bit direct addressing mode.

, BSR(M ; Data Memory ; From Opcode(® i
000N 00h
Bank select TTTT Tolo]z]o] BankO Jeen [2[2]2[2]2]2]2[] From the 16-bit opcode
100h 00h N _
PIC18 C language: Bank Select(? ok FFh 0 PIC18 assembly language:
BSR = 0x02; 200h 0h '
! Bank 2 . J ADDWF f, d, a
300h)
PIC18 assembly language: 16-bit opcode:
MOVLW 0x02 Bank 3 '
o e b 0010 01da ffff ffff
A Bank13 I
EO0Oh 00h
Bank 14
FFh
FOOh| 00h
Bank 15
FFFh FFh

MEMORY

Data memory: Special Function Registers (SFR)

ECOLE PUBLIQUE D'INGENIEURS

Address Name Address Name Address Name Address Name Address Name CENTRE DE RECHERCHE
FFFh| TOSU FDFh| INDF2(" FBFh| CCPR1H FO9Fh IPR1 F7Fh| UEP15
H FFER| TOSH FDEh| POSTING2™M FBEh| CCPRIL F9Eh PIR1 FTEh| UEP14
The S F R ba n k IS d pa rt OF th € RAM FFDh TOSL FDDh|POSTDEG2!" FBDh| CCP1CON F9Dh PIE1 F7Dh| UEP13
data memory Where CPU a nd FFCh| STKPTR FDCh| PREINC2 FBCh| CCPR2H Foch| @ F7Ch| UEP12
. . FFBh| PCLATU FDBh| PLUSW2(! FBBh| GCCPR2L F9Bh| OSCTUNE F7Bh| UEPT1
peri pheral registers are ma DDEd. FFAh| PCLATH FDAh| FSR2H FBAh| CCP2CON Foan| —@ F7Ah] UEP10
FF9h PCL FD9h| FSR2L FBYh =iz Fa9h (2 F79h UEP9
|t means registe rs are physica [ly FF8h| TBLPTRU FDsh| STATUS FBSh| BAUDCON Fosh S F78h UEPS
. FF7h| TBLPTRH FD7h| TMROH FB7h| ECCP1DEL F97h = F77h UEP7
outside of the memory but th ey FF6h| TBLPTRL FD6h| TMROL FB6h| ECCP1AS Foeh| TRISE® F76h| UEPE
H H FF5h| TABLAT FDsh| TOCON FBSh| CVRCON Fash| TRISD! F75h UEP5
are accessl ble Wi th d memory FF4h| PRODH FD4h —@ FB4h| CMCON F94h| TRISC F74h UEP4
ad d d ress. FF3h| PRODL FD3h| OSCCON FB3h| TMR3H F93h| TRISB F73h| UEP3
FF2h| INTCON FD2h| HLVDCON FB2h| TMR3L F92h| TRISA F72h UEP2
FFih| INTCON2 FD1h| WDTCON FB1h| T3CON F91h 0 F71h UEP1
FFOh| INTCON3 FDOh| RCON FBOh| SPBRGH Fooh — F70h UEPO
FEFh| INDFO' FCFh| TMR1H FAFh| SPBRG rerh| @ F6Fh| UCFG
FEEh| POSTINCO!™ FCEh| TMRIL FAER| RCREG FBEh (2 F6ER| UADDR
FEDh|POSTDECO™ FCDh| T1CON FADh| TXREG F8Dh| LATE® F6Dh UCON
CO re memo ry ma p p ed reg iste rs FECh| PREINCO'! FCCh TMR2 FACh| TXSTA Fach| LATD® F6Ch| USTAT
FEBh| PLUSWO FCBh PR2 FABh| RCSTA F8Bh| LATC FEBh UEIE
. o e . FEAR| FSROH FCAh| T2CON FAAR —@ FBAh| LATB F6Ah UEIR
Perl pheral SpQCla llsed FU nCtlonS FESh| FSROL FC9h| SSPBUF FASh| EEADR F8oh| LATA F69h UIE
memo ry ma p p e d re g iS te rs FESh| WREG FC8h| SSPADD FASh| EEDATA F8sh —u F68h UIR
FE7h| INDF1 FC7h| SSPSTAT FA7h| EECON2(" F87h| @ F67h| UFRMH
FE6h| POSTINC1(M FC6h| SSPCON1 FABh| EECON1 F86h — F&6h| UFRML
FE5h|POSTDECT FC5h| SSPCON2 FASh o) Fa5h =) F&5h| SPPCONB)
FE4h| PREINC1'V FC4h| ADRESH FA4h =l F84h| PORTE F64h| SPPEPS™
FE3h| PLUSW1M FC3h| ADRESL FA3h g Faah| PORTD® F63h| sPPcFGH
FEZh| FSRIH FC2h| ADCONO FAZh IPR2 F82h| PORTC F62h| SPPDATAR)
FE1h| FSRIL FC1h| ADCON1 FA1h PIR2 F81h| PORTB F&1h —@
FEOh BSR FCOh| ADCON2 FAOh PIE2 F80h| PORTA F60h =

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Data Memory Map

00h | Access RAM | gsep

M When executing an operation that uses direct addressing,

00n 100n

S L P the execution stage checks the <a> field (access bank):

Bank 3 EE:: :PR %EDF: \\'\ ADDWF f’ d 3 a <a> = IO' Or '1 !

Bank 4 EEE GprIN gm .\\

B I P \ If <a> = ‘0’ the CPU only sees the

. The 4 most significant bits

oh
D 700h ‘). 00h
Access RAM Low

s of the 12-bit data memory address come from the access
ooh 800N (SFRs) FFh o °
bank register (0x0 or OxF) = Fast solution.

Bank 8 /
Unused /

iy | / If <a> = ‘1" the CPU can access to all the data memory. It
uses the value of the to
generate the 4 most significant bits of the 12-bit data
/ memory address.

FFh EFFh [

0oh FOOh [/
ORULT e L T
Bank 15 S
FFn SER FFFh

Data Bus<8>
I = =
8 8 Data Latch =
- ENSI
c

Address Latch

able Pointer<21>| |«

inc/dec logic

MEMORY

Data memory

ECOLE PUBLIQUE D'INGENIEURS
Program Counter 12 CENTRE DE RECHERCHE
Data Address<12>

[3TLevelStack |

STKPTR

Find Following items in this schematic

Address Latch

Program Memory
(BM6/32/64 Kbytes)

Data Latch

Data memory

Table Latch

BSR (Bank Select Register)

Instruction Bus <16>

Access bank register

Instruction Hpw State machine
Decode and control signals

Note how they are placed relatively to each Control
other and how the 12-bit data memory
address is built.
oscra [Semel | [“rowerup
Block Ll
0sc2d ——p 4| Oscillator
LFINTOSC Start-up Timer|
soscl ——pi|| Oscillator Power-on
Reset
64 MHz
SOSCO —P||| Osdillator WE;_Itd":lrog
TICIR(" ——»| [Single-Suppl Brown-out (Il | precision | FvR >
MeL Proggramr::iFr}];lr Reset Referenog
In-Circuit Fail-Safe
Debugger Clock Monitor

MEMORY
PIC18 architecture

@ MICROCHIP

Program & data Up to 128 KB Up to 4 KB
memories A e

Memory Bus

Central
. PIC18F Core
Processmg 16 MIPS
Unit 1.8 to 5.5V

- Register File
8-bit ALU 8-bit

8x8 2 MB Address
Multiplier Space

Upto1KB
EEPROM

Interrupt
| Control

p—

sng |esaydiiad

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Peripherals

PERIPHERALS

PERIPHERALS P

Definition

bz Pointer<21 =] @ Daia Bus<8> ECOLE PUBLIQUE D'INGENIEURS
Dl P OiN e 2 1 | (=== CENTRE DE RECHERCHE
T N A A A v
&8 &8 Data Latch
| inc/dec logic |

that can o || :
be used to and/or
process some operation while letting the

Program Memaory
(8M&/3264 Kbytes)

CPU performing something else. e

RA=T:0>

PORTE
—
> RB<7.0=

PORTC
=P Rreero-

For all MCUs, peripherals are physically
connected to the data bus and their internal

i Stale machine
ction e
control signals

registers are mapped to the data memory. | roron
From the program point of view, accessing to N T i

a register (read or write) is the same as s m| e A |
accessing to a data memory cell. oy :

Example of PIC18F27/47K40 CPU and . sor | | e [Ty [T | oo [encscon .

HLVD | [Controller Timer5 (| Timerg

F F F y Fy F 3 F F N Fy
v v v h 4 h 4 v v + v
2% 4 3
T picomparators| CCP1 || PWM3 || MSSP1 | EUSARTA ADC VR
— T DAG | cicz copz | Pwia | MSSP2 |EDSaRTZ| ECWE || BSM [PMD 1ot [¥

PERIPHERALS
Peripherals,

Hardware functions
% guess what they do! CAEN

@ MICROCHIP '

Up to 128 KB Up to 4 KB Upto1KB |
Flash RAM EEPROM

Memory Bus

sng |esayduad

Interrupt
| Control

PIC18F Core
16 MIPS
1.8 to 5.5V

v Register File
8-bit ALU 8-bit
8x8 2 MB Address
Multiplier Space

PERIPHERALS S==SZZ===s
Configuration, activation, use
’ CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

When the processor starts (after power-on or reset), no peripheral function is
configured nor activated.

The programmer must explicitly configure and activate hardware services that are
needed for the application. Only then the peripherals can be used.

Most of peripherals have configuration registers that must be set once in addition to
working registers that contains updated values.

void main()

{

// Peripherals configurations
// and other initialisation

while(1) {
// Main routine and peripherals use

}
}

PERIPHERALS SsS822S2eC
|/O ports EN I

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

They can be used as independent digital inputs and/or outputs. The PIC18F27K40 has 5
ports (port A to port E), which makes 40 independent GPIOs available.

Each port has eight registers to control the operation. These registers are: Read LATx TRISX
PORTx registers (reads the levels on the pins of the device)
LATx registers (output latch) D Q
TRISX registfars (data direction) Write LATX
ANSELXx re.zglsters (analog select) Write PORTX CK A~ p
WPUx registers (weak pull-up)
INLVLx (input level control) Data Register
SLRCONX registers (slew rate control)
ODCONX registers (open-drain control) DataBus _J
P I/O pin
Read PORTx
To digital peripherals
ANSELx vss

To analog peripherals «

PERIPHERALS
|/O ports EANESNI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Example of GPIO (General Purpose Input/Output) on the Curiosity HPC board.

First the RA4 pin is configured as an output, then the output value is set to ‘high'. This
will turn on the LED D2 on this pin.

PIC18 C program PIC18 assembly program

TRISA = OXEF; MOVLW OxEF
MOVWF TRISA

LATD = 0x10; MOVLW 0x10
MOVWF LATA

RA4 = pin 4 of port A (also bit 4 of registers associated to port A).
TRISx = register that contains the direction of the 8 pins of the port x (‘0@°’ = Output,

‘1’ = Input).
LATx = register that contains the output value for pins configured as outputs in port x.

PERIPHERALS

Input/output interfaces

MCUs usually have more peripherals than they can really handle.

ENSI
CAEN

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

In fact, many peripherals are connected to the same pins. This implies that some

peripherals cannot be used at the very same time.

DIP package TQFP package QFN package

=]
MCLRVPPIRE3 — [] 1 it 40 [=— RB7/KBI3/PGD ‘;f
RAO/AND =[] 2 39 [] =—»= RBB/KBI2IPGC 44-Pin TQFP 5% .
RA1/ANT =—[] 3 38 [1 =— RB5/KBI1/PGM SSEpRER 585 2y
RA2/AN2/VREF-/CVREF <—s[] 4 37 0 =— RB4/AN11/KBIO/CSSPP 8838nsa8852
RA3/AN3/VREF+ =[] 5 35 [] =——» RB3/AN9/CCP2(MvPO EEEEEEESEES
RA4/TOCKI/C1OUT/RCY =—[] 6 35 [1 =——= RB2/ANS/INT2/VMO
RAS/AN4/SS/HLVDIN/C20UT =—=[] 7 34 [] =—= RB1/AN10/INT1/SCK/SCL EEHHEHHH
REO/ANS/CK1SPP <—[] 8 —— 33 [1 ~—= RBO/AN12/INTO/FLTO/SDI/SDA RCTRXDTSDO =—=czxfio 0+ NCTCRSTcyeeld
RESRNGERISHE «—=[18 gin =O=—im EBimmerie T WE— anar™
REZAN7/OESPP =—=[]10 & & 31[J=——Vss R e —~ils Piirasss ZBmoi_ v
VoD ——] 11 et 30 [J =—= RD7/SPP7/P1D RBU/AN12INTOFLTO/SDI/SDA : %E: REVANGCOSHP AN TN
Vss — o125 O 29 [1 =—= RD6/SPP6/P1C RBANIOINT TSCrcscL S RETT RIASSET gt
OSC1/CLKI —[] 13 oo 28 [] =— RD5/SPP5/P1B RBIANI/CCP2VPO =—s CTT} 11 _ (3 = RA4/TOCKICIOUTIRCY
OSC2/CLKO/RAB «—[] 14 27] «<—» RD4/SPP4 FRRREAAAE T
RCO/T10SO/T13CKI =[] 15 26 [1 ~— RC7/RX/DT/SDO frigitiLe e
RC1/T10SI/CCP2"/UCE <+—s[] 16 25 [] «— RCB/TX/CK sagzoopssh:
RC2/CCP1/P1A =[] 17 24 [1 =—= RC5D+VP BogessEsTsg
Vuss =——=[] 18 23 [] =—= RC4/D-VM S2s888zEayz
RDO/SPPO =[] 19 53 [] ~— RD3/SPP3 goctesk 52
RD1/SPP1 =—s[] 20 21 [] =— RD2/SPP2 983 g g
o =¥

RAZ0

PIC1BF4455
PIC18F4550

it
== RCOTIOSCTIICK

PERIPHERALS

Input/output interfaces

As many input and output pins can be used by several peripherals,

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

connections

between pins and peripherals must be set using the Peripheral Pin Select (PPS) module.

Input pin
redirections

RAO

Peripheral abc

[
|
|
|
|
|
|

Peripheral xyz

I RC7

:
E

Peripheral
outputs
redirections

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Like all other MCUs, the PIC18 family offers configuration and system hardening
services.

“Hardening” an application consists in making it less sensitive to its environment
(power supply fluctuations, ...) or even handle unexpected situations (watchdog, ...).

Any program on PIC18 must start with this configuration:

PLLDIV=2, CPUDIV=0SC1_PLL2, FOSC=HSPLL_HS
BOR=OFF, WDT=0OFF, MCLRE=ON, LVP = OFF

PERIPHERALS

Reference clock module

External clock ==X
(e.g. 8 MHz cristal) os[XH

Tlosolx
T108Ig—

PIC18F4550
|
I PLLDIV USB Clock Source
|
| — =12
! =10,
! USBDIV
............ ! 5 =8
'Primary Oscil\alor: r\\: % =5
| ! | x +4
] Sleep’ !] +3
! I | o
le—1 ! | +2 FSEN
L +1
|
| HSPLL, ECPLL, 1 USB
| XTPLL, ECPIO Peripheral
] E—
= 0
£ -
CPUDIV 2
@
= o
ié +4 E
2| =3
XT, HS, EC, ECIO] P I Tkl cPU
B | om—
E| . :
3 IDLEN
e . [o] FOSC3:FOSCO
1+ Secondary Oscillator Peripherals
3 i R~ A4
| | L~ TI0SG | =
; T10SCEN |
p Enable i
Oscillator

OSCCON<6:4> Internal Oscillator
OSCCON<6:4> A 8 MHz
Il 4 MHz
Internal e Clock
OsBsiiI\alzor 2 2MHz Control
ocl 2
& MHz 5 1MHz |,
Source Mz 3 500 kHz. FOSC3:FOSCO OSCCON<1:0>
intre || INTOSC) | @ 250 kHz
Source g 126 kHz
= Cleck Source Option
31 kHz (INTRC) —' 31 kHz for other Modules
T]

F OSCTUNE<T=>

WDT, PWRT, FSCM

and Two-Speed Start-up

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

PLLDIV=2,
CPUDIV=0SC1_PLL2,
FOSC=HSPLL_HS

The watchdog is an application agent.

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

In normal circumstances, the application resets the watchdog timer at regular intervals.

When the application remains stuck for a long time, the watchdog timer is not reset
and will eventually overflow. The watchdog will force the application to reboot by

resetting the CPU.

SWDTEN Enable WDT

WDTEN

WDT Counter

INTRC Control

+128

INTRC Source

Change on IRCF bits

|

Programmable Postscaler Reset

1:1to0 1:32,768

ey L
T

All Device Resets

WDTPS<4:1> 4

f WDT

SLEEP

vl

Wake-up from
Power-Managed
Modes

WDT
Reset

INTERRUPTS

Event

Interrupt Flag (IF)

Interrupt Request (IRQ) ccoLt rusLioue piucincuns

Interrupt Service Routine (ISR)

3!

B
B
e
C=
K&
I

INTERRUPTS

Interrupt flag ENSI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Once a peripheral has been configured, it becomes autonomous.

When its job is done (counting, converting, ...) or when a special event occurs
(message received, switch pressed, ...), the peripheral will raise a Interrupt Flag (IF).

Ainterrupt Flag is a bit in a register, each flag corresponding to a precise event.

Peripheral Interrupt Request (Flag) Register 0

Bit 7 6 5 4 3 2 1 0
\ \ | TvROF | ioCIF INT2IF INT1IF INTOIF
Access RMW R RIW RIW RIW
Reset 0 0 0 0 0

Bit 5 — TMROIF TimerO Interrupt Flag bit("

Value Description

1 TMRO register has overflowed (must be cleared by software)
0 TMRO register has not overflowed

Bit 4 - IOCIF Interrupt-on-Change Flag bit(*:2)

Value Description v.ﬂ
1 10C event has occurred (must be cleared by software) '
0 10C event has not occurred

Bits 0, 1, 2 — INTxIF External Interrupt ‘x’ Flag bit(!-3

Value Description
1 External Interrupt ‘'x” has occurred
0 External Interrupt 'x’ has not occurred

INTERRUPTS SRNEESRAN

Interrupt Service Routine (ISR)

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

However some events require immediate attention. Plus, using interrupt flags the same
way as classical variables (e.g. testing them in “if"” statements) is inefficient.

That is why an has been designed. This is the hardware way of
stopping the normal execution flow of the CPU. It will then switch to the execution of a
Function dedicated to the event: the

// Doing the classical way // Using interrupt mechanism
main() { voild event_A_ISR()
{ ...}
// do something
. void event B _ISR()
{ ...}
ces voild event_C_ISR()
while(1){ {...32
if(event_A)
. main() {
if(event_B) // do something
{%& event_C) :::
) } X Main program
} " execution is paused

INTERRUPTS S===ZEssEs
Interrupt Request (IRQ) CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Allinterrupts are disabled by default: it is the programmer work to decide and explicitly
tell which event is worthy enough to lead to an interrupt.

To do so, the programmer must configure the Interrupt controller.

This circuit will turn selected interrupt flags into Interrupt Requests (IRQ), that will
cause the CPU to stop its current work.

Peripherals Interrupt Controller Interrupt flag

Physical z Bit in a register that indicates that an event
Interrupt ; g
event - Flag P X Disabled has occurred.
Physical Z)-m,..fz‘f?‘ﬁd.... Interrupt),
Flag Request
Internal z Interrupt »___'_Er_‘f‘t_)l_e_d____ Interrupt o,
even Flag ““' Request
Physical .
event Z’- Inter ot Hes"enabled

Interrupt request
Physical wire connected to the CPU that
makes it switch to another function.

Notes

Many interrupt flags can be linked onto the
same IRQ signal.

A specific IRQ corresponds to a specific ISR.

43

INTERRUPTS SESSESEESES
Interrupt controller CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

The interrupt controller consists of AND and OR gates. This circuitry independently let
or prevent interrupt flags becoming interrupt requests.

To do so, one must configure the registers of the interrupt controller. Like the PIC18,
most MCUs need to configure three bits for each interrupt:

the Interrupt Flag (IF) bit, the Interrupt Enable (IE) bit, the Interrupt Priority (IP) bit.

Peripherals Interrupt Controller
Event z- TMROIF N
TMROIE —P) ? High-priority
TMROIP —P) ' IRQ

PIRO to PIR7 registers
Contain the individual Flag (IF) bits.

mgg%g ? Low-priority
PIEO to PIE7 IRQ

Contain the individual enable (IE) bits.

IPRO to IPR7
Contain the individual priority (IP) bits.

INTERRUPTS
Interrupt controller ENSI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

After configuring the interrupt controller For every single interrupt source, one last
parameter should allow the CPU to see IRQ signals.

Most MCUs have a Clobal Interrupt Enable (CIE) bit to do so. The PIC18 has two of
them: GIEH and GIEL for respectively high- and low-priority interrupts.

Peripherals Interrupt Controller
S Tmeo =h)—
TMROIE High-priority
TMROIP — GIEH —P| IRQ
TMROIE ..
Low-priority

INTCON registers THROIF E%EE " TRQ

Contain enable and priority bits.

Bit 7 6 5 4

| cEGEH | PEEGEL | IPEN | |

INTERRUPTS EEE e
Interrupt controller: PIC18F27/47K40 interrupt controller logic ENSI

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

Wake-up if in
Idle or Sleep
PEO—|) i
IPRO— / — o
Interrupt Flag bit — ., Several interrupt —— Three distinct IRQs
Interrupt Enable bit PIE1— sources can merge CPU Vector at can be generated:
. . . IPR1 (g Location 0008h
Interrupt Priority bit — into a single IRQ - Reset
i D A High-priority
— GIEH/GIE .
e - Low-priority
One gate for each . 'Pw
interrupt source / : IPEN
(controlled through . GIEL/PEIE
. PIRx___| . IPEN
several registers) } Priority
IPRx— management
High Priority Interrupt Generation
Low Priority Interrupt Generation
Circuitry has been B Several inflerrupt 6105%1 énterFUDt
. — E it
duplicated to handle both PRI —4) sources cgn merge apre ks
high- and low-priority BigsL | into a single IRQ \
interrupts = —)—‘ S§ N
: PIRO——] : Interrupt to
. PIEO — CPU Vector at
. IPRO—H Location 0018h
’ \
PIRX:) GIEHFGIE—I—
E%_O GIEUPEIEJ

INTERRU PTS =
Interrupt Service Routine (ISR) CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Interrupt Service Routines (ISR) are Functions called by the Interrupt vectors, which
are specific parts of the Flash memory.

When the CPU sees an Interrupt Request (IRQ), it pauses its main program and
branches automatically to the corresponding interrupt vector, causing the execution of

the Interrupt Service Routine.

High Priority Interrupt Vector |0008h

Low Priority Interrupt Vector |0018h

Peripherals Interrupt Controller

Physical

event z- IntFelrargupt }XDisabled
Physical Enabled

eVent IntFe_LrargU t -> lllllllllllll o
Internal z- Enabled

Interrupt
event Prununnnnnnnns — e
Fla o Request g

Physical .*

Fvent z- IntFelrargUDt p+*" Enabled

On-Chip
Int. Vector Program Memory

7FFFh
8000h

» Int. Vector

User Memory Space

Read ‘0’

1FFFFFh
200000H~

INTERRUPTS SRNEESRAN

Interrupt Service Routine (ISR)

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

ISRs are not proper functions: they should not be called from the main program.

They are automatically called whenever the CPU sees the IRQ signals (this is called
“event-driven programming”, fr: programmation évenementielle)

, it is not possible to pass arguments to the
ISR Functions.

In order to exchange information between the main program and the ISRs, global
variables can be used.

But remember global variables are shared resources and be used very carefully!

INTERRUPTS

Interrupt Service Routine (ISR)

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Here is an example of how writing an ISR using the Microchip XC8 toolchain.

void interrupt high_priority high_ isr(void) {——— |SR for all high-priority interrupt sources

if(PIRObits.TMROIF - . o
i e) { Check if Timer 0 is the source of this interrupt

PIRObits.TMROIF = o;\
} Clear the Timer O interrupt flag, and proceed to what it should do

if(PIR1bits.ADIF) { Check if ADC is the source of this interrupt

PIR1bits.ADIF = 0;\
y Clear the ADC interrupt flag, then proceed to what it should do

id i id . . .
void atn(void) { Configure interrupt for Timer 0

timer0_init();
interrupt_enable(); Enable interrupt for the CPU

while(1) {
}

Main routine (main application function)
}

are very small areas in the Flash memory.
— 16 bytes for the high-priority interrupt vector

— 2 bytes for the low-priority interrupt vector

In Fact, those areas are too small to contain the ISR but they
are large enough to contain CALL or GOTO instructions, which
will actually call the ISR (see next page).

Technically ISR are stored in the program memory, but they
should be accessed only through interrupt vectors.

Reset Vector

High Priority Interrupt Vector

Low Priority Interrupt \ector

On-Chip
Program Memory

Read ‘0’

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

0000h

0008h
0018h

7FFFh
8000h

1FFFFFh

User Memory Space

200000

I

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

As an ISR can be called at anytime, it will break the that the main program is
using (values of W-reg, STATUS, BSR for the PIC18). All registers must be saved in order
to return to prior values when the ISR has ended.

The PIC18 toolchain will usually implement a hardware context backup for the high-
priority ISR and a software context backup for the low-priority ISR.

high_vector: low_vector:
CALL high_isr, 1 GOTO low_1isr
high_isr: low_isr:
MOVWF wreg_tmp
RETFIE 1 MOVFF STATUS, status_tmp
MOVFF BSR, bsr_tmp

MOVFF bsr_tmp, BSR
MOVFF status_tmp, STATUS
MOVF wreg_tmp, W
RETFIE

>

INTERRUPTS
Summary
Peripherals Interrupt Controller
Physical
Physical z Enabled
Interru t A S E EEEEEEEEER InterrUDt
Internal z-—L Enabled
Interrupt Interrupt
event ’IIIIIIIIIIII‘I‘_%
Flag ““‘ Request
Physical oo
IE bits for each int. source
One GIE bit for the CPU
Player is
offside

z Raises Blow the
Flag whistle

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

INTERRUPTS 0 E=oz======
PIC18 architecture ENS'

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

@ MICROCHIP

Peripherals
Program & data Up to 128 KB Up to 4 KB Upto1KB
memaories Flash RAM EEPROM

o
Memory Bus -§
= @

Central s

i PIC18F Core
Processing 16 MIPS S—
unit 1.8 to 5.5V

- Register File
8-bit ALU 8-bit

8x8 2 MB Address
Multiplier Space

CONTACT

Dimitri Boudier - PRAG ENSICAEN
dimitri.boudier@ensicaen.fr

With the precious help of:
 Hugo Descoubes (PRAG ENSICAEN)
 Bogdan Cretu (MCF ENSICAEN)

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

mailto:dimitri.boudier@ensicaen.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

