
2021-2022

Chapter 1

Inside
Processors

2

PROCESSOR

Whatever its type (MCU, DSP, GPP… all Turing machines model design by John Von
Neumann), a CPU-based processor can be described by the following diagram.

Central
Processing
Unit

Memory

Bus

Peripherals
specialized
functions

I/O

Execution of the
instructions and
control of all the
other parts

Contains:
 - either the list of instructions
(program memory)
 - or the list of data (data
memory)
 - or both (unified memory)

Hardware functions,
depend on the
processor

3

PROCESSOR

All modern processors use a CPU or a set of CPUs, which functionalities depend on the
CPU family.

The memory can be internal (within the processor) or external (as a separate IC). There
are also different uses for the memory: work with the CPU (main memory) or store
information on a long-time scale (mass storage).

The peripherals also depend on the processor architecture. For now, let’s just say
peripherals allow interactions between the processor and its environment.

Different CPU/memory/peripherals configurations lead to different architectures. The
most common architectures will be described in the “Processor Architectures” chapter.

CENTRAL PROCESSING UNIT

Control Unit

Processing Unit (ALU)

Register file

5

CENTRAL PROCESSING UNIT

The Central Processing Unit (CPU, fr: Unité Centrale de Traitement) is the brain of
modern processors, from low-power MCUs to high-performances GPUs.

The CPU’s role is to control the information flow within the processor.

As a consequence it controls internal buses, which gives it also has an indirect control of
all others hardware functionalities.

The way the CPU reads the program instructions is sequential: this is exactly the way
you write your programs (using C, C++, assembly, Python, …).

The CPU will fetch an instruction from the memory, understand it and then execute it.
And it will start over and over again, one instruction after the other.

6

CENTRAL PROCESSING UNIT

 Control Unit

The CPU’s Control Unit is in charge of running the instruction flow, following this cycle:

Fetch

Decode

Execute

Store

Read the next instruction from program memory

Understand the operation to perform by reading the opcode (operation code)

Perform the operation, or usually ask the Processing Unit to do it

Save the result into internal registers or back to the data memory

7

CENTRAL PROCESSING UNIT

 Processing Unit

The Processing Unit of the CPU is responsible for processing most of the instructions.

Depending on the CPU family, it may include:
● An Arithmetic and Logic Unit (ALU)

● Logic operations and simple maths

● A Floating-Point Unit (FPU)
● For advanced processors

● A multiplier

● A shift register

● ...

8

CENTRAL PROCESSING UNIT

 Processing Unit: Arithmetic and Logic Unit

The Arithmetic and Logic Unit (ALU) is the heart of the Processing Unit.

On this example diagram, data to be processed are on inputs A and B.

The choice of the operation is given by the Control Unit using FALU bits (thanks to the DECODE stage).

The result is produced on Out output while signal flags (S, Z, C, O, …) are updates according to the result. The
Control Unit will read them so it can adapt the instructions to be executed (e.g. if, while, for instructions).

Operations:
 AND, OR, XOR, NOT,
 ADD, SUB, INC,
 CMP, ...

Flags:
 S – Signed
 Z – Zero
 C – Carry
 O – Overflow
 ...

n-bit
ALU

A

B

OUT

Flags

FALU

Cin

9

What is a register ?

10

CENTRAL PROCESSING UNIT

 Register file

The Register file (fr: banque de registres) contains, as you may guess, the CPU
registers.

Registers are small memory cells placed in the heart of the CPU: they are very fast, but
can only contain few data.

Some are general purpose registers (or working registers), which can store any value
(input or output of ALU, temporary variable, …).

Others are specific registers, which can only be used for a given objective.

For instance the Status Register contains some flags, the Program Counter register contains the address of the
next instruction to be executed, and you’ll discover more in the future.

MEMORY

Volatile memory

Remanent mass storage

12

MEMORY

 Byte-addressable memory

Memory is an electronic device that allows to store information (data and instructions).

Most common usages are volatile memory (that works with the processor) and
remanent mass storage (that stores information when not used).

Memories used during the program execution are addressable by byte (unit of storage).

However this is not true for cache memories (built within the CPU) and mass storage that uses file systems (ext4,
FAT32, NTFS, …)

32-bit memory address space
8-bit words / 1-Byte words

 → 1 Byte x 232 = 4,294,967,296 Bytes = 4 GB

 ← 1 byte / 8 bits →

0x00000000

0x00000001

0x00000002

0x00000003

…

0xFFFFFFFD

0xFFFFFFFE

0xFFFFFFFF

←
2
3
2
ad

r
es

s
es

→

13

MEMORY

 Brainstorming

Let’s make it clear:

When switched off, a volatile memory will lose its data but a remanent memory will preserve it.

ROM (Read-Only Memory) is an obsolete technology, with which the memory could be written only once. It has
been replaced by PROM (Programmable ROM), especially UVPROM (Ultra-Violet PROM, now obsolete) and
EEPROM (Electrically Erasable PROM). Please be aware that some still use the word “ROM” to refer to EEPROM.

RAM (Random Access Memory) is a volatile memory technology. “Random Access” means you can access and
random address with a constant latency.

The mass storage memory is a remanent memory that keeps your data even when the power is off.

The main memory is a volatile but very fast memory. The processor uses it to store data that is actively used.

En français, “mémoire morte” est aussi obsolète que “ROM”, “mémoire vive” est encore utilisé pour parler de
mémoire volatile, souvent sous-entendant la RAM.

14

MEMORY

 Volatile memory (RAM)

Volatile memory comes in two types: DRAM (Dynamic RAM) and SRAM (Static RAM).

DRAM needs to be periodically updated because of the pico-capacitors. Used for computer memory. Small
silicon footprint but slower than SRAM. Current technologies are DDR4 SDRAM (4th generation of Double Data
Rate Synchronous DRAM)

SRAM is based on latching circuitry. Used for registers and L1/L2/L3 cache memories. Way faster but bigger
silicon footprint.

DRAM
1 bit requires 1 transistor
and 1 pico-capacitor

SRAM
1 bit requires 6
CMOS transistors

15

MEMORY

 Remanent mass storage (HDD, Flash)

Remanent mass storage comes different technologies:

Magnetic storage is used by floppy disks (fr: disquettes) and HDDs (Hard Drive Disks, fr: disque dur).

Electrical charge storage with logic circuitry is used by EEPROMs (Electrically Erasable Programmable ROMs).
The most common EEPROM technology is Flash memory (NAND and NOR), which has a constant access time to
the information. SSDs (Solid-State Drives) also use Flash technology.

NAND (top) and NOR (bottom)
Flash memory structures

Flash drive
(Flash memory on the left)

Hard Drive Disk (HDD)

16

MEMORY

 Evolution

EXECUTING A PROGRAM

From the C file to an executable binary program

Execution on a home-made processor

18

EXECUTING A PROGAM

 From the C file to an executable program

We’ll keep it simple here, as you will see this in details next year.

The toolchain (fr: chaîne de compilation) is the software tool that “converts” your C
source files into an executable binary file.

.c

.c

.h

.s

.s

.o

.o

exe

P
re

p
ro

ce
ss

o
r

+
C

o
m

p
ile

r

A
ss

em
b

le
r

Li
n

ke
r

Text file Text file Binary file Binary file

Toolchain (e.g. GCC, ICC, CLANG …)

19

EXECUTING A PROGAM

 From the C file to an executable program

Why ever use a toolchain?

The C language is portable, which means it can be used on different computer systems.

But the processor you choose only understands its own set of instructions. That is the
opposite of portability: the code that the processor understands can only run by itself.

The toolchain is a way of writing a universal program (using a portable language) only
once, and then create an executable binary for the target processor.

.c

.c

.s

.s

.o

.o

exe

P
re

p
ro

ce
ss

o
r

+
 C

o
m

p
ile

r

A
ss

em
b

le
r

Li
n

ke
r

Portable or target
specific

Target specific Target specific Target specific

20

EXECUTING A PROGAM

 From the C file to an executable program

Example of an executable program for a x64-architecture processor, from C to binary.

char inc(char bar);

int main(void){
 char foo;
 foo = inc(1);
 return 0;
}

char inc(char bar) {
 return bar+1;
}

C language program

main:
push %rbp
mov %rsp, %rbp
sub $0x10, %rsp
mov $0x1, %edi
call 4004f2 <inc>
mov %al, %-0x1(%rbp)
mov %0x0, %eax
leave
ret

inc:
push %rbp
mov %rsp, %rbp
mov %edi, %eax
mov %al, -0x4(%rbp)
movzbl -0x4(%rbp), %eax
add $0x1, %eax
pop %rbp
ret

Assembly language program

Instructions Operands

00000000004004d6 <main>:
4004d6: 55
4004d7: 48 89 e5
4004da: 48 83 ec 10
4004de: bf 01 00 00 00
4004e3: e8 0a 00 00 00
4004e8: 88 45 ff
4004eb: b8 00 00 00 00
4004f0: c9
4004f1: c3

00000000004004f2 <inc>:
4004f2: 55
4004f3: 48 89 e5
4004f6: 89 f8
4004f8: 88 45 fc
4004fb: 0f b6 45 fc
4004ff: 83 c0 01
400502: 5d
400503: c3

Binary program

Program
memory
address

Binary instructions

21

EXECUTING A PROGAM

 Home-made processor

Behold our home-made processor!

This is a RISC-like (Reduced Instruction Set Computer) elementary CPU.

Its simple ISA (Instruction Set Architecture) is not related to any commercial CPU.

Operation Syntax Description Example Binary Opcode

ADD ADD srcReg, srcReg, dstReg Add two register values ADD R0, R1, R0 000 r r r uu

JMP JMP label Program memory jump JMP main 001 aaaa u

LOAD LOAD address, dstReg Load data memory value to register LOAD var1, R1 010 aaa r u

MOV MOV srcReg, dstReg Copy register value to another register MOV R1, R0 011 r r uuu

MOVK MOVK constant, dstReg Copy 3-bit constant value into register MOV 5, R1 100 kkk r u

STR STR srcReg, address Store register value to data memory STR R1, var1 101 r aaa u

r = register bit a = address bits
r=0 Select R0→ k = constant value
r=1 Select R1→ u = bit unused

22

EXECUTING A PROGAM

 Home-made processor

uuuuuuuu uuuuuuuu

uuuuuuuu

uuuuuuuu

MUX

R0 R1

uuuuuuuu

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = ___

Address Binary code
 0x0 ________
 0x1 ________
 0x2 ________
 0x3 ________
 0x4 ________
 0x5 ________
 0x6 ________
 0x7 ________
 0x8 ________
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 ________
 0x1 ________
 0x2 ________
 0x3 ________
 0x4 ________
 0x5 ________
 0x6 ________
 0x7 ________

Data
memory

8-bit data bus

3-bit data address bus

23

EXECUTING A PROGAM

 Home-made processor

Now translate this C program
into assembly language for
our custom CPU!

Operation Syntax Description Example Binary Opcode

ADD ADD srcReg, srcReg, dstReg Add two register values ADD R0, R1, R0 000 r r r uu

JMP JMP label Program memory jump JMP main 001 aaaa u

LOAD LOAD address, dstReg Load data memory value to register LOAD var1, R1 010 aaa r u

MOV MOV srcReg, dstReg Copy register value to another register MOV R1, R0 011 r r uuu

MOVK MOVK constant, dstReg Copy 3-bit constant value into register MOV 5, R1 100 kkk r u

STR STR srcReg, address Store register value to data memory STR R1, var1 101 r aaa u

r = register bit
r = 0 Select R0→
r = 1 Select R1→

a = address bits
k = constant value
u = bit unused

char value = 3; // Stored at 0x0
char saveValue; // Stored at 0x1

void main(void) {
 while(1) {
 value += 2;
 saveValue = value;
 }
}

} Data memory map

24

EXECUTING A PROGAM

 Home-made processor

25

EXECUTING A PROGAM

 Home-made processor

Solution

char value = 3; // Stored at 0x0
char saveValue; // Stored at 0x1

void main(void) {
 while(1) {
 value += 2;
 saveValue = value;
 }
}

C language program

0x0 main: LOAD &value, R1 01000010
0x1 MOVK 2, R0 10001000
0x2 ADD R0, R1, R0 00001000
0x3 STR R0, &value 10100000
0x4 LOAD &value, R1 01000010
0x5 STR R1, &saveValue 10110010
0x6 JMP main 00100000
0x7 undef uuuuuuuu
0x8 undef uuuuuuuu
0x...
0xF undef uuuuuuuu

Instruction
address

Instruction =
Operation + Operands Binary

Assembly language program

26

EXECUTING A PROGAM

 Home-made processor

uuuuuuuu uuuuuuuu

uuuuuuuu

uuuuuuuu

MUX

R0 R1

uuuuuuuu

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x0

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Follow the CPU work step by step

27

EXECUTING A PROGAM

 Home-made processor

uuuuuuuu uuuuuuuu

uuuuuuuu

uuuuuuuu

MUX

R0 R1

01000010

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x1

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Application starts

Cycle #1:
Fetch the 0x0 address instruction,
Increment PC.

28

EXECUTING A PROGAM

 Home-made processor

uuuuuuuu uuuuuuuu

01000010

uuuuuuuu

MUX

R0 R1

10001000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x2

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #2:
Fetch the 0x1 address instruction,
Decode the 0x0 address instruction,
Increment PC.

29

EXECUTING A PROGAM

 Home-made processor

uuuuuuuu 00000011

10001000

01000010

MUX

R0 R1

00001000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x3

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #3:
Fetch the 0x2 address instruction,
Decode the 0x1 address instruction,
Execute the 0x0 address instruction,
Increment PC.

30

EXECUTING A PROGAM

 Home-made processor

00000010 00000011

00001000

10001000

MUX

R0 R1

10100000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x4

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #4:
Fetch the 0x3 address instruction,
Decode the 0x2 address instruction,
Execute the 0x1 address instruction,
Increment PC.

31

EXECUTING A PROGAM

 Home-made processor

00000101 00000011

10100000

00001000

MUX

R0 R1

01000010

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x5

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000011
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #5:
Fetch the 0x4 address instruction,
Decode the 0x3 address instruction,
Execute the 0x2 address instruction,
Increment PC.

32

EXECUTING A PROGAM

 Home-made processor

00000101 00000011

01000010

10100000

MUX

R0 R1

10110010

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x6

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #6:
Fetch the 0x5 address instruction,
Decode the 0x4 address instruction,
Execute the 0x3 address instruction,
Increment PC.

33

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

10110010

01000010

MUX

R0 R1

00100000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x7

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 uuuuuuuu
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #7:
Fetch the 0x6 address instruction,
Decode the 0x5 address instruction,
Execute the 0x4 address instruction,
Increment PC.

34

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

00100000

10110010

MUX

R0 R1

uuuuuuuu

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x8

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 00000101
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #8:
Fetch the 0x7 address instruction,
Decode the 0x6 address instruction,
Execute the 0x5 address instruction,
Increment PC.

35

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

uuuuuuuu

00100000

MUX

R0 R1

uuuuuuuu

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x0

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 00000101
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #9:
Fetch the 0x8 address instruction,
Decode the 0x7 address instruction,
Execute the 0x6 address instruction,
Increment PC, but overwrites it with JMP.

36

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

uuuuuuuu

uuuuuuuu

MUX

R0 R1

01000010

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x1

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 00000101
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #10:
Fetch the 0x0 address instruction,
Decode the 0x8 address instruction,
Execute the 0x7 address instruction,
Increment PC.

37

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

01000010

uuuuuuuu

MUX

R0 R1

10001000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x2

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 00000101
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #11:
Fetch the 0x1 address instruction,
Decode the 0x0 address instruction,
Execute the 0x8 address instruction,
Increment PC.

38

EXECUTING A PROGAM

 Home-made processor

00000101 00000101

10001000

01000010

MUX

R0 R1

00001000

Execution Unit

Decode stage
Program
Counter

Fetch stage PC = 0x3

Address Binary code
 0x0 01000010
 0x1 10001000
 0x2 00001000
 0x3 10100000
 0x4 01000010
 0x5 10110010
 0x6 00100000
 0x7 uuuuuuuu
 0x8 uuuuuuuu
 ...

Program
memory

4-bit program
address bus

8-bit instruction bus

CPU

Address Data value
 0x0 00000101
 0x1 00000101
 0x2 uuuuuuuu
 0x3 uuuuuuuu
 0x4 uuuuuuuu
 0x5 uuuuuuuu
 0x6 uuuuuuuu
 0x7 uuuuuuuu

Data
memory

8-bit data bus

3-bit data address bus

 main: LOAD &value, R1
 MOVK 2, R0
 ADD R0, R1, R0
 STR R0, &value
 LOAD &value, R1
 STR R1, &saveValue
 JMP main

Cycle #12:
Fetch the 0x2 address instruction,
Decode the 0x1 address instruction,
Execute the 0x0 address instruction,
Increment PC.

39

EXECUTING A PROGAM

 Program execution

FETCH

DECODE

EXECUTE

WRITEBACK

INSTRUCTION BUS (Read only)

DATA BUS (Read/Write)

PROGRAM
MEMORY

DATA MEMORY

CPU

Fetch

Decode

Execute

Store

Read the next instruction
from program memory

Understand the operation to
perform by read the opcode

Perform the operation
(usually performed by ALU)

Save the result into internal
registers or the data memory

CPU CYCLE

Volatile
RAM

Persistent
FLASH
EEPROM

40

PERIPHERALS

Examples

42

PERIPHERALS

 Definition

Peripherals are hardware functions built for specific processing.

The CPU can delegate some operations to dedicated peripherals (counting, FFT, …) in
order to keep the CPU executing the application program.

But most of the peripherals are input/output interfaces (General Purpose I/O, analogue
I/O, communication…).

Peripherals form a set of hardware services
(GPIOs, ADC, timers, SPI/I2C/UART/USB/Eth, …)
that differ from a processor to another.

43

PERIPHERALS

 PIC18 example

Example

Microchip’s PIC18 (8-bit MCU)

This MCU architecture will be used
as an example during lessons and
will be used in practical labs.

That is why peripherals will not be
detailed in this chapter.

44

PERIPHERALS

 SPI peripheral

The SPI (Serial Peripheral Interface) is a communication protocol widely used on PCBs
(Printed Circuit Boards). Designed by Motorola, it operates in full-duplex and use a
Master-Slave scheme. The master initiates all communications and command the slaves.

MOSI: Master Output, Slave Input

MISO: Master Input, Slave Output

SCK: Serial Clock

SSx: Slave Select (for slave #x)

CONTACT

Dimitri Boudier – PRAG ENSICAEN

dimitri.boudier@ensicaen.fr

With the precious help of:
● Hugo Descoubes (PRAG ENSICAEN)
● Bogdan Cretu (MCF ENSICAEN)

mailto:dimitri.boudier@ensicaen.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

