
Régis Clouard, ENSICAEN - GREYC
2I1AC3 : Génie logiciel et Patrons de conception

Chapter
03 Workflows with Git

“Git devient plus facile une fois que vous avez compris l'idée de base
selon laquelle les branches sont des endofoncteurs homéomorphes

mappant des sous-variétés d'un espace de Hilbert”
Isaac Wolkerstorfer

2
Outline

1
Collaborating

With Git

3

Workflow

■ A workflow defines a plan for organizing the collaborative work of multiple
developers for the production of software.

■ Workflow based on Git
● Everything goes through branches

■ Multiple workflows
● GitHub Workflow
● Git Workflow
● GitLab Workflow

■ Suppose 2 types of collaborators using the forge GitLab
● Developer
● Version maintainer

4
Outline

1
Collaborating

With Git
2

GitHub Workflow

5

GitHub Workflow

■ The simplest: suitable for small projects like student project
■ Branches: Only 2 types of branch

▶ main: Permanent production branch. Contains production-ready code.
▶ x-feature: Temporary development branch, where x is the issue number and

feature is the issue name.

Main Branch

Feature Branch
TestingPull

Request

6

The “GitHub” Workflow

■ Developer
1. Assign an issue
2. Run git fetch on the command line
3. Create a new branch x-feature
4. Edit code, git commit etc.
5. git pull origin main
6. Resolve conflicts
7. Push on GitLab
8. Create merge request

■ Version maintainer
9. Assign a reviewer

1. Developer
10. Fix code review comments
11. Deal with any pipeline failures

2. Version maintainer
12. Accepts and merges, then the issue is

automatically closed by GitLab and
the branch is deleted on the remote
repository

3. Developer
13. Delete branch on the local repository

7
Outline

1
Collaborating

With Git
2

GitHub Workflow

3
Git

Workflow

8

Git Workflow

■ The most complete: suitable for large projects
■ Branches

● main: Permanent production branch (stable version of the software)
● develop: Permanent integration branch
● feature/x-ff: Temporary feature development branch (where x is the issue number)
● hotfix/x-issue: Temporary bug fix branch
● release/x.y.z: Temporary production release branch

Main Branch

Develop Branch

V1.2.0 V1.2.1

Feature Branch

Release
Branch

Hotfix
Branch

V1.1.9

9

The “GitHub” Workflow

■ Developer
1. Assign an issue
2. Run git fetch on the command line
3. Create a new branch x-feature
4. Edit code, git commit etc.
5. git pull origin main
6. Resolve conflicts
7. Push on GitLab
8. Create merge request

■ Version maintainer
9. Assign a reviewer

1. Developer
10. Fix code review comments
11. Deal with any pipeline failures

2. Version maintainer
12. Accepts and merges, then the issue is

automatically closed by GitLab and
the branch is deleted on the remote
repository

3. Developer
13. Delete branch on the local repository

10
Outline

1
Collaborating

With Git
2

GitHub Workflow

4
GitLab

Workflow

3
Git

Workflow

11

GitLab Workflow (basic version)

■ GitLab Git Workflow is a branching strategy that integrates with GitLab's CI/CD
pipelines to systematically build, test, and deploy code changes.

■ Branches
● main: Permanent development branch
● production: Permanent production branch
● x-feature: Temporary development branch (where x is the issue number)

Main Branch

Feature Branch
TestingMerge

Request

Production Branch
Tagged version

V1.0.0

Merge
Request

Ajouter :
1/issue

2/ Create merge request

12

GitLab Workflow

■ With GitLab Flow, all features and fixes go to the main branch while enabling
production and stable branches.

■ GitLab Flow incorporates a pre-production branch to make bug fixes before
merging changes back to main before going to production. Teams can add as many
pre-production branches as needed — for example, from main to test, from test to
acceptance, and from acceptance to production.

■ Workflow
■ Main → x-feature (x-hotfix) → pull, push → merge request → code review,

discussion, approval → production → main
■ Start with an issue
■ Create a branch from this issue inside of the web interface
■ Copy/paste the branch name and pull that branch locally
■ Edit the code
■ Commit & Push to gitlab
■ Create a merge request
■ Accept the merge request

13

CI/CD

■ Continuous integration
■ Continuous deployment
■ Continuous delivery
■

■

■ Pipeline → jobs

14

■ 1. Open a GitLab issue (or assign
yourself to one)

■ 2. Create a branch
■ 3. Develop in the new branch
■ 4. Open a merge request and ask for

code review
■ 5. Rebase branch and solve conflicts
■ 6. Merge the branch into main
■ 7. Delete the branch
■ 8. Close the GitLab issue

GitLab Workflow

■ Create an issue
■ Create a merge request in the issue

with the Create merge request button
■ Run git fetch on the command line
■ git checkout MR-BRANCH-NAME
■ Edit code, git commit etc.
■ git push MR-BRANCH-NAME
■ Deal with any pipeline failures…
■ Assign someone to review the MR
■ Respond to review issues, etc.
■ The reviewer accepts and merges,

then the issue is automatically closed
by GitLab

15
Developer Workflow (1)

■ A developer adds a feature to the software
● Get the last version of the main branch from the remote repository

● git pull origin main
1. Create a new branch (eg query-database)

● git branch query-database
● git checkout query-database

2. Develop the feature
● Edit / compile / test...

3. At the end of the day (/lab), push the branch to the remote repository (for backup
purpose)

▶ git add .
▶ git commit -m "message"
▶ git push

16
Developer Workflow (2)

■ At the end of the feature development
1. Get the last version of the main branch from the remote repository

1.git pull origin main
2. Merge the branch in main and solve the conflicts

1.git checkout query-database
2.git merge main

3. Execute all the tests
4. Push the branch to the remote repository

1.git add .
2.git commit -m "message"
3.git push

5. On GitLab, use the UI to create a « merge request »

17

origin my-computer

master

my-feature

master

my-feature

Issue board

❹ git commit

❸ git branch

❷ git pull

❶ assign issue

❼ merge request

❽ close issue

❺ git pull
+resolve conflicts

❻ git push

README.md
src Class1
 Class2
lib lib.so

README.md
src Class1
 Class2
lib lib.so

README.md
src Class1
 Class2
 Class3
lib lib.so

README.md
src Class1
 Class2
 Class3
lib lib.so

11 : Add Class3

The GitLab Workflow

18
Outline

1
Collaborating

With Git
2

GitHub Workflow

4
GitLab

Workflow

3
Git

Workflow

5
Best

Practices

19

Best practices

■ One branch = one functionality / hotfix
● Develop using small steps to avoid integration problems and be able to go back to

previous versions, for example:
■ Short-lived branches

● A branch must be short-lived, at most 1 lab session
● Old branch becomes difficult to merge since it diverges more and more from the main

branch
● Create a new branch for each new contribution
● Long-lived branch : master, develop
● Delete branch after merged

■ Small commit
● Develop using small steps to avoid integration problems and be able to go back to

previous versions, for example:
● one commit every 20 minutes.
● one merge request per day.
● Keep atomic commit (one thing)

20

Best practices

■ Continuous CI/CD
● Automate code test and build checking
● Never merge into main code which does not compile.

■ Avoid big bang integration
● Daily continuous integration

Contribution
développeur

1

Contribution
développeur

2
Contribution
développeur

3

21

Semantic Versioning

■ Version number: MAJOR.MINOR.PATCH
■ Increment the:

● MAJOR version when you make incompatible changes
● MINOR version when you add functionality in a backward compatible manner
● PATCH version when you make backward compatible bug fixes

■ Benefit
● Suppose there is a function library called “Fire Truck”, which requires another suite

named “Ladder”.
● When the fire engine was created, the ladder version number was 3.1.0.
● Because fire trucks use some version of the new features of 3.1.0, you can safely

specify that the version number of the ladder is equal to 3.1 0 but less than 4.0.0.
● In this way, when ladder versions 3.1.1 and 3.2.0 are released, you can incorporate

them directly into your suite management system because they can be compatible
with pre-existing software dependencies.

22

Conventional Commits

■ Format:

■ Example

<type>(scope): <subject>

[optional body]

[optional footer]

<type>(scope): <subject>

[optional body]

[optional footer]

feat(browser): add onUrlChange event

Add new event to browser:

- forward popstate event if available

- forward hashchange event if popstate not available

- do polling when neither popstate nor hashchange available

Closes #392

feat(browser): add onUrlChange event

Add new event to browser:

- forward popstate event if available

- forward hashchange event if popstate not available

- do polling when neither popstate nor hashchange available

Closes #392

23

Conventional Commits

■ Scope
■ Subject :

● impératif présent e.g. add (not adds)
● Pas de majuscule au début
● pas de point à la fin
● Pied de page: BREAKING CHANGE → MAJOR (annoncé avec !)

24

Conventional Commits

■ Types: (link to semantic versioning)
● feat: add a new feature (MINOR)
● fix: a bug fix (PATCH)
● docs: changes on documentation (MINOR)
● style: changes that do not affect the meaning of the code (white-space, formatting,

missing semi-colons, etc) (PATCH)
● refactor: a code change that neither fixes a bug nor adds a feature (PATCH)
● perf: a code change that improves performance (PATCH)
● test: adding missing tests or correcting existing tests (PATCH)
● build: changes that affect the build system or external dependencies (MINOR/MAJOR)
● ci: changes to CI/CD configuration files and scripts (PATCH)
● chore: other changes that don't modify src or test files (PATCH)
● revert: reverts a previous commit (MAJOR/MINOR)
● !: breaking change (MAJOR)

25
Outline

1
Collaborating

With Git
2

GitHub Workflow

4
GitLab

Workflow

3
Git

Workflow

5
Best

Practices

Demo
GitLab

Workflow

26

main 1-bugfix 2-feature

Creation of the
Branch

2-feature

Integration of
1-bugfix

Update the branch
with the last

version of main

Integration of
2-feature

The “GitHub” Workflow

● Developer
1.Assign an issue
2.Run git fetch on the command line
3.Create a new branch x-feature
4.Edit code, git commit etc.
5.git pull origin main
6.Resolve conflicts
7.Push on GitLab
8.Create merge request

● Version maintainer
● Review
● Deal with any pipeline failures…
● The reviewer accepts and merges, then the issue is automatically closed by

GitLab and the branch is deleted on the remote repository
● Developer

● Delete branch on the local repository

27

TL;DR

Feature development

git pull git branch git pull git push

(git push)

git commit

git add

test

compile

edit

28

Git commands

■ Developer
$ git pull origin main
$ git branch x-feature (where x is the issue number)
$ git checkout x-feature

● Development : edit / compile / test
$ git commit -ma “message”
$ git pull origin main

● Resolve conflict
$ git pull

● Create a pull request

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

