02

Chapitre

Un paradigme :
La Conception Orientée Objet

112AC1 : Génie logiciel et Conception orientée objet
Régis Clouard, ENSICAEN - GREYC

« N'importe quel programmeur peut écrire
du code que |'ordinateur comprend.

Les bons programmeurs écrivent du code
qgue les humains peuvent comprendre. »

k“l‘h’“ rAlllIAu



(a) Visibilité

51

" Limiter I'acces aux membres des classes

e attributs
e méthodes
e Qassociations

Notation = Acces aux membres | Acces aux membres
UML de la classe de la classe
par d'autres classes par des sous-classes
public + Vv Vv
protected # X Vv
private - X X




52

Soit trois variantes de la méthode Y::d(), les
codes suivants sont-ils compilables ?

1. void d() { a=5; } X

2. void d() { b(); } X

3. void d() { c(); +v

Soit quatre variantes de la méthode Z::e (), les
codes suivants sont-ils compilables ?

4, void e() { x.a=5; } X

5. void e() { x.b(); } X

6. void e() { x.c(); }X
7. void e() { x.d(); }X

Le code de la méthode X::.c() est-il compilable ?
8. void c() {

X X = new X();

X.b(); v
1



Visibilité

53

= Régle : restreindre le plus possible la visibilité

" |ntention
e Sécuriser la représentation interne des classes
* Profiter du compilateur pour garantir I'encapsulation

Regle intangible

Pour assurer I’encapsulation
les attributs et associations
sont TOUJOURS privés




(b) Portée des noms

= || est possible de donner un méme nom a des méthodes de classes
différentes

Image Complexe Lien

+ affiche() + affiche() + affiche()

* La portée des noms est locale
* Le choix est levé a la compilation : liaison statique



A

Image

+ affiche()

Quiz

B

Complexe

C

Lien

+ affiche()

+ affiche()

Quelle méthode affiche() est exécutée (A, BouC) ?
Image 1 = new Image();

1.affiche();

Complexe c = few Complexe();

c.affiche();

B

55




(c) Surcharge

= Dans une méme portée, donner un méme nom de méthode mais

avec des signatures différentes
e Signature d’'une méthode :
> nom + parameétres (ni le type de retour, ni les exceptions)

Complexe

+ additionne(val: int)
+ additionne(val: float)

* Le choix est levé a la compilation : liaison statique



Quiz

Complexe

>

+ additionne(val: int)
B | + additionne(val: float)

Quelle méthode additionne( ) est exécutée (A ouB)?
Complexe ¢ = new complexe();
c.additionne(5f);
c.additionne(5); B
c.additionne(5d); A

X



(d) Redéfinition et Polymorphisme

58

= Dans une méme hiérarchie, donner la méme signature a des

méthodes de classes héritées

* La méthode exécutée est celle qui est la plus proche de la classe

+1()

réelle de I'objet appelant en remontant dans la hiérarchie.

+f()
+0()

+()

+9()
+hQ)




Quiz

Quelle méthode est exécutée (A, Bou C) ?

>

a = new C();

+10) O

+i)

Q

~ ~

(
(

» < 0O
2

+f()
+0()

N " NE Nn=m

—~ N N

OO0O0O0OT TCTWmY 2
H- 30 >JJQ T KQ T
A~ AN
~— "~ || ~—— ||vv
—
< 8 0
o
-~

N E Nunm

+f()

+9()
+hQ)

O

>



Polymorphisme

" Liaison dynamique
* Le choix de la méthode ne peut pas étre décidé a la compilation

mais seulement a I'exécution

* Quelle méthode () est exécutée dans le code suivant ? +10)
A getObject(int 1d) { 4

switch(id) { B
case 1: return new B(); +f()
case 2: return new C(); +g()

} JA

}

A a = getObject(readInteger()); <

a.f(); +H(
+g()




Polymorphisme

= |es classes dérivées ne peuvent pas diminuer la visibilité
d’'une méthode redéfinie
= Pourquoi ?

A getObject(int id) { A
switch(id) { #1()
case 1: return new B(); JAN

case 2: return new C(); |

) B C

-f() +()

a = getObject(1);
(),



(e) Classe abstraite

62

= Classe sans instance
* |Interdire la création d’instances parce qu’elles
n'ont pas de sens
* Laclasse abstraite n'est pas assez compléte pour
étre instanciée

<<abstract>>
Forme2d

+ getCouleur()

T

Carre

" EnJava
* Mot clé abstract devant la classe
e Code Java pour I'exemple

Cercle




(f) Méthode abstraite

63

= Méthode sans code
* Obliger les sous-classes a définir le code
de la méthode
* Profiter du polymorphisme pour exécuter la
bonne méthode
* Exemple:
» Forme2d f = new Carre();

» double s = f.calculeSurface();

" En Java

* Le mot clé abstract devant la méthode
* Pas de code dans le corps de la méthode
* Code Java pour I'exemple

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

A

Carre

Cercle

+ calculeSurface()

+ calculeSurface()




Classe et méthode abstraites

64

= Une classe avec une méthode abstraite est
forcément abstraite

= Une classe abstraite peut ne contenir que
des méthodes concretes

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

A

Carre

Cercle

+calculeSurface()

+calculeSurface()




(g) Interface

= Une classe avec uniguement des méthodes abstraites pures

Ni attribut, ni association

= |ntention : définir un type

Imposer la liste des méthodes publiques que
doivent, au moins, posséder toutes les classes
qui implémentent I'interface

<<Interface>>
Ordonnable

+isGreater(Ordonnable): boolean

65




" Contrat entre deux classes :

Une classe fournit un service
Une classe utilise le service

Classification

-
-
-
-
-
.-

<—> Ordonnable

+isGreater(ordonnable) Fleche en pointillee
————— ~"~~

Interface

<<interface>>

Marathonian

+isGreater(Ordonnable): boolean | | +isGreater(Ordonnable): boolean

66




Interface en Java

6/

= | 3 notation Java utilise le

mot clé Interface
* Code Java pour I'exemple

Classification

<<interface>>
Ordonable

+isGreater(Ordonnable): boolean

A

Marathonian

+isGreater(Ordonnable): boolean




Interface

= Une classe peut implémenter plusieurs interfaces

Classification

<>

<<interface>>
Ordonnable

+isGreater(ordonnable)

Printable

<<interface>>

&

Marathonian

+print()

+isGreater(Ordonnable): boolean
+print()

= On peut définir des références d’interface
Ordonnable o = new Marathonian();

" Mais, on ne peut pas créer d’instance d’interface
Ordonnable o = new Ordonnable()+

63




Cas de I'héritage multiple

69

= Questions
* Combien de batteries pour un téléphone ?

* Quelle méthode lock () est appelée dans

MobileDevice

<<virtual>> 4

Batterie

le bout de code suivant ?

MobilePhone

t = new AndroidPhone()
t. lock();

#lock()

|

Laptop

l#ock()

SmartPhone

7

AndroidPhone




Avons nous besoin de I'héritage multiple ?

/0

Personne

/ ~

Etudiant

Chercheur

Personne

i

1

inscrire()

suivreSeminaire()

N 7

Doctorant

Etudiant Chercheur
Doctorant Séminaire

T~

+suivreSeminaire()




Avons nous besoin de I'héritage multiple ?

/1

Vehicule

I

VéhiculeVoile

I

Vehicule

I

VéhiculeMoteur

VéhiculeVoile

N/

Voilier

T

Volilier

I

VéhiculeMoteur

?

\/
Moteur




Que retenir de ce chapitre ?

/2

= Dans l'utilisation de ces concepts, le développeur doit respecter deux

principes fondamentaux :
* Restreindre le plus possible la visibilité des membres pour respecter le principe
d’encapsulation et la sécurité.
> Ainsi les attributs sont TOUJOURS privés.
* Lever les choix avant la programmation.



	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

