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Chapitre

Un paradigme :
La Conception Orientée Objet

112AC1 : Génie logiciel et Conception orientée objet
Régis Clouard, ENSICAEN - GREYC

« N'importe quel programmeur peut écrire
du code que |'ordinateur comprend.

Les bons programmeurs écrivent du code
qgue les humains peuvent comprendre. »

k“l‘h’“ rAlllIAu



(a) Visibilité

51

" Limiter I'acces aux membres des classes

e attributs
e méthodes
e Qassociations

Notation = Acces aux membres | Acces aux membres
UML de la classe de la classe
par d'autres classes par des sous-classes
public + Vv Vv
protected # X Vv
private - X X
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Soit trois variantes de la méthode Y::d(), les
codes suivants sont-ils compilables ?

1. void d() { a=5; } X

2. void d() { b(); } X

3. void d() { c(); +v

Soit quatre variantes de la méthode Z::e (), les
codes suivants sont-ils compilables ?

4, void e() { x.a=5; } X

5. void e() { x.b(); } X

6. void e() { x.c(); }X
7. void e() { x.d(); }X

Le code de la méthode X::.c() est-il compilable ?
8. void c() {

X X = new X();

X.b(); v
1



Visibilité
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= Régle : restreindre le plus possible la visibilité

" |ntention
e Sécuriser la représentation interne des classes
* Profiter du compilateur pour garantir I'encapsulation

Regle intangible

Pour assurer I’encapsulation
les attributs et associations
sont TOUJOURS privés




(b) Portée des noms

= || est possible de donner un méme nom a des méthodes de classes
différentes

Image Complexe Lien

+ affiche() + affiche() + affiche()

* La portée des noms est locale
* Le choix est levé a la compilation : liaison statique



A

Image

+ affiche()

Quiz

B

Complexe

C

Lien

+ affiche()

+ affiche()

Quelle méthode affiche() est exécutée (A, BouC) ?
Image 1 = new Image();

1.affiche();

Complexe c = few Complexe();

c.affiche();

B
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(c) Surcharge

= Dans une méme portée, donner un méme nom de méthode mais

avec des signatures différentes
e Signature d’'une méthode :
> nom + parameétres (ni le type de retour, ni les exceptions)

Complexe

+ additionne(val: int)
+ additionne(val: float)

* Le choix est levé a la compilation : liaison statique



Quiz

Complexe

>

+ additionne(val: int)
B | + additionne(val: float)

Quelle méthode additionne( ) est exécutée (A ouB)?
Complexe ¢ = new complexe();
c.additionne(5f);
c.additionne(5); B
c.additionne(5d); A

X



(d) Redéfinition et Polymorphisme
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= Dans une méme hiérarchie, donner la méme signature a des

méthodes de classes héritées

* La méthode exécutée est celle qui est la plus proche de la classe

+1()

réelle de I'objet appelant en remontant dans la hiérarchie.

+f()
+0()

+()

+9()
+hQ)




Quiz

Quelle méthode est exécutée (A, Bou C) ?

>

a = new C();
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Polymorphisme

" Liaison dynamique
* Le choix de la méthode ne peut pas étre décidé a la compilation

mais seulement a I'exécution

* Quelle méthode () est exécutée dans le code suivant ? +10)
A getObject(int 1d) { 4

switch(id) { B
case 1: return new B(); +f()
case 2: return new C(); +g()

} JA

}

A a = getObject(readInteger()); <

a.f(); +H(
+g()




Polymorphisme

= |es classes dérivées ne peuvent pas diminuer la visibilité
d’'une méthode redéfinie
= Pourquoi ?

A getObject(int id) { A
switch(id) { #1()
case 1: return new B(); JAN

case 2: return new C(); |

) B C

-f() +()

a = getObject(1);
(),



(e) Classe abstraite

62

= Classe sans instance
* |Interdire la création d’instances parce qu’elles
n'ont pas de sens
* Laclasse abstraite n'est pas assez compléte pour
étre instanciée

<<abstract>>
Forme2d

+ getCouleur()

T

Carre

" EnJava
* Mot clé abstract devant la classe
e Code Java pour I'exemple

Cercle




(f) Méthode abstraite
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= Méthode sans code
* Obliger les sous-classes a définir le code
de la méthode
* Profiter du polymorphisme pour exécuter la
bonne méthode
* Exemple:
» Forme2d f = new Carre();

» double s = f.calculeSurface();

" En Java

* Le mot clé abstract devant la méthode
* Pas de code dans le corps de la méthode
* Code Java pour I'exemple

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

A

Carre

Cercle

+ calculeSurface()

+ calculeSurface()




Classe et méthode abstraites
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= Une classe avec une méthode abstraite est
forcément abstraite

= Une classe abstraite peut ne contenir que
des méthodes concretes

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

A

Carre

Cercle

+calculeSurface()

+calculeSurface()




(g) Interface

= Une classe avec uniguement des méthodes abstraites pures

Ni attribut, ni association

= |ntention : définir un type

Imposer la liste des méthodes publiques que
doivent, au moins, posséder toutes les classes
qui implémentent I'interface

<<Interface>>
Ordonnable

+isGreater(Ordonnable): boolean
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" Contrat entre deux classes :

Une classe fournit un service
Une classe utilise le service

Classification

-
-
-
-
-
.-

<—> Ordonnable

+isGreater(ordonnable) Fleche en pointillee
————— ~"~~

Interface

<<interface>>

Marathonian

+isGreater(Ordonnable): boolean | | +isGreater(Ordonnable): boolean

66




Interface en Java

6/

= | 3 notation Java utilise le

mot clé Interface
* Code Java pour I'exemple

Classification

<<interface>>
Ordonable

+isGreater(Ordonnable): boolean

A

Marathonian

+isGreater(Ordonnable): boolean




Interface

= Une classe peut implémenter plusieurs interfaces

Classification

<>

<<interface>>
Ordonnable

+isGreater(ordonnable)

Printable

<<interface>>

&

Marathonian

+print()

+isGreater(Ordonnable): boolean
+print()

= On peut définir des références d’interface
Ordonnable o = new Marathonian();

" Mais, on ne peut pas créer d’instance d’interface
Ordonnable o = new Ordonnable()+

63




Cas de I'héritage multiple
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= Questions
* Combien de batteries pour un téléphone ?

* Quelle méthode lock () est appelée dans

MobileDevice

<<virtual>> 4

Batterie

le bout de code suivant ?

MobilePhone

t = new AndroidPhone()
t. lock();

#lock()

|

Laptop

l#ock()

SmartPhone

7

AndroidPhone




Avons nous besoin de I'héritage multiple ?

/0

Personne

/ ~

Etudiant

Chercheur

Personne

i

1

inscrire()

suivreSeminaire()

N 7

Doctorant

Etudiant Chercheur
Doctorant Séminaire

T~

+suivreSeminaire()




Avons nous besoin de I'héritage multiple ?

/1

Vehicule

I

VéhiculeVoile

I

Vehicule

I

VéhiculeMoteur

VéhiculeVoile

N/

Voilier

T

Volilier

I

VéhiculeMoteur

?

\/
Moteur




Que retenir de ce chapitre ?

/2

= Dans l'utilisation de ces concepts, le développeur doit respecter deux

principes fondamentaux :
* Restreindre le plus possible la visibilité des membres pour respecter le principe
d’encapsulation et la sécurité.
> Ainsi les attributs sont TOUJOURS privés.
* Lever les choix avant la programmation.
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