
Chapitre
02

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Un paradigme :
La Conception Orientée Objet

« N'importe quel programmeur peut écrire
du code que l'ordinateur comprend.

Les bons programmeurs écrivent du code
que les humains peuvent comprendre. »

Martin Fowler

51

(a) Visibilité

■ Limiter l’accès aux membres des classes
● attributs
● méthodes
● associations

Notation
UML

Accès aux membres
de la classe

par d’autres classes

Accès aux membres
de la classe

par des sous-classes
public + √ √
protected # χ √
private - χ χ

52

X
-a
-b()
#c()

Z
+e()

Y
+d()

-x

Soit trois variantes de la méthode Y::d(), les
codes suivants sont-ils compilables ?
 1. void d() { a=5; }
 2. void d() { b(); }
 3. void d() { c(); }

Soit quatre variantes de la méthode Z::e(), les
codes suivants sont-ils compilables ?
 4. void e() { x.a=5; }
 5. void e() { x.b(); }
 6. void e() { x.c(); }
 7. void e() { x.d(); }

Le code de la méthode X::c() est-il compilable ?
 8. void c() {
 X x = new X();
 x.b();
 }

χ
χ

χ
χ

χ

√

χ

√

Quiz

53

Visibilité

■ Règle : restreindre le plus possible la visibilité
■ Intention

● Sécuriser la représentation interne des classes
● Profiter du compilateur pour garantir l’encapsulation

Règle intangible

Pour assurer l’encapsulation
les attributs et associations

sont TOUJOURS privés

54

(b) Portée des noms

■ Il est possible de donner un même nom à des méthodes de classes
différentes

● La portée des noms est locale
● Le choix est levé à la compilation : liaison statique

Image

+ affiche()

Complexe

+ affiche()

Lien

+ affiche()

55
Quiz

Quelle méthode affiche() est exécutée (A, B ou C) ?
 Image i = new Image();
 i.affiche();
 Complexe c = new Complexe();
 c.affiche();

Image

+ affiche()

Complexe

+ affiche()

Lien

+ affiche()

A B C

A

B

56

(c) Surcharge

■ Dans une même portée, donner un même nom de méthode mais
avec des signatures différentes

● Signature d’une méthode :
▶ nom + paramètres (ni le type de retour, ni les exceptions)

● Le choix est levé à la compilation : liaison statique

Complexe

+ additionne(val: int)
+ additionne(val: float)

57

Quiz

Quelle méthode additionne() est exécutée (A ou B) ?
 Complexe c = new complexe();
 c.additionne(5f);
 c.additionne(5);
 c.additionne(5d);

Complexe

+ additionne(val: int)
+ additionne(val: float)

A

B

χ

B

A

58

(d) Redéfinition et Polymorphisme

■ Dans une même hiérarchie, donner la même signature à des
méthodes de classes héritées

● La méthode exécutée est celle qui est la plus proche de la classe
réelle de l’objet appelant en remontant dans la hiérarchie.

A
+f()

B
+f()
+g()

C
+f()
+g()
+h()

59

Quiz

Quelle méthode est exécutée (A, B ou C) ?
A a = new C();
a.f();
a.h();
a.g();
B b = (B)a;
b.f();
b.g();
b.h();
C c = (C)b;
c.h();
c.i();

A
+f()
+i()

B
+f()
+g()

C
+f()
+g()
+h()

χ

χ

χ
C

C
C

C

A

60

Polymorphisme

■ Liaison dynamique
● Le choix de la méthode ne peut pas être décidé à la compilation

mais seulement à l’exécution
● Quelle méthode f() est exécutée dans le code suivant ?

A getObject(int id) {
 switch(id) {
 case 1: return new B();
 case 2: return new C();
 }
}
A a = getObject(readInteger());
a.f();

A
+f()

B
+f()
+g()

C
+f()
+g()
+h()?

61

Polymorphisme

■ Les classes dérivées ne peuvent pas diminuer la visibilité
d’une méthode redéfinie

■ Pourquoi ?
A getObject(int id) {
 switch(id) {
 case 1: return new B();

case 2: return new C();
 }
}

A a = getObject(1);
a.f();

A
#f()

B
-f()

C
+f()

62

<<abstract>>
Forme2d

+ getCouleur()

Carre Cercle

(e) Classe abstraite

■ Classe sans instance
● Interdire la création d’instances parce qu’elles

n’ont pas de sens
● La classe abstraite n’est pas assez complète pour

être instanciée

■ En Java
● Mot clé abstract devant la classe
● Code Java pour l’exemple

63

(f) Méthode abstraite

■ Méthode sans code
● Obliger les sous-classes à définir le code

de la méthode
● Profiter du polymorphisme pour exécuter la

bonne méthode
● Exemple :

▶ Forme2d f = new Carre();
▶ double s = f.calculeSurface();

■ En Java
● Le mot clé abstract devant la méthode
● Pas de code dans le corps de la méthode
● Code Java pour l’exemple

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

Carre

+ calculeSurface()

Cercle

+ calculeSurface()

64

Classe et méthode abstraites

■ Une classe avec une méthode abstraite est
forcément abstraite

■ Une classe abstraite peut ne contenir que
des méthodes concrètes

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

Carre

+calculeSurface()

Cercle

+calculeSurface()

65

(g) Interface

■ Une classe avec uniquement des méthodes abstraites pures
● Ni attribut, ni association

■ Intention : définir un type
● Imposer la liste des méthodes publiques que

doivent, au moins, posséder toutes les classes
qui implémentent l’interface

<<Interface>>
Ordonnable

+isGreater(Ordonnable): boolean

66

Interface

■ Contrat entre deux classes :
● Une classe fournit un service
● Une classe utilise le service

Classification

Marathonian

+isGreater(Ordonnable): boolean

<<interface>>
Ordonnable

+isGreater(ordonnable)
*

City

+isGreater(Ordonnable): boolean

Flèche en pointillée

67

Interface en Java

Classification

Marathonian

+isGreater(Ordonnable): boolean

<<interface>>
Ordonable

+isGreater(Ordonnable): boolean
*

■ La notation Java utilise le
mot clé Interface

● Code Java pour l’exemple

68

Classification

Marathonian

 +isGreater(Ordonnable): boolean
 +print()

<<interface>>
Ordonnable

+isGreater(ordonnable)

 <<interface>>
Printable

+print()

*

■ Une classe peut implémenter plusieurs interfaces

■ On peut définir des références d’interface
● Ordonnable o = new Marathonian();

■ Mais, on ne peut pas créer d’instance d’interface
● Ordonnable o = new Ordonnable();

Interface

69

MobileDevice

Batterie

MobilePhone

#lock()

Laptop

l#ock()

SmartPhone

<<virtual>>

AndroidPhone

Cas de l'héritage multiple

■ Questions
● Combien de batteries pour un téléphone ?
● Quelle méthode lock() est appelée dans

le bout de code suivant ?
t = new AndroidPhone()
t.lock();

70

Avons nous besoin de l'héritage multiple ?

Etudiant

Personne

ChercheurEtudiant

inscrire()

Chercheur

suivreSeminaire()

EtudiantDoctorant

Etudiant

Personne

ChercheurEtudiant Chercheur

EtudiantDoctorant EtudiantSéminaire

+suivreSeminaire()

71

Avons nous besoin de l'héritage multiple ?

Etudiant

Vehicule

ChercheurVéhiculeVoile VéhiculeMoteur

EtudiantVoilier

Etudiant

Vehicule

ChercheurVéhiculeVoile VéhiculeMoteur

EtudiantVoilier EtudiantMoteur

72

Que retenir de ce chapitre ?

■ Dans l’utilisation de ces concepts, le développeur doit respecter deux
principes fondamentaux :

● Restreindre le plus possible la visibilité des membres pour respecter le principe
d’encapsulation et la sécurité.

▶ Ainsi les attributs sont TOUJOURS privés.
● Lever les choix avant la programmation.

	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

