
Chapitre
02

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Un paradigme :
La Conception Orientée Objet

« N'importe quel programmeur peut écrire
du code que l'ordinateur comprend.

Les bons programmeurs écrivent du code
que les humains peuvent comprendre. »

Martin Fowler
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(a) Visibilité

■ Limiter l’accès aux membres des classes
● attributs
● méthodes
● associations

Notation
UML

Accès aux membres
de la classe

par d’autres classes

Accès aux membres 
de la classe

par des sous-classes
public + √ √
protected # χ √
private - χ χ
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X
-a
-b()
#c()

Z
+e()

Y
+d()

-x

Soit trois variantes de la méthode Y::d(), les 
codes suivants sont-ils compilables ?
    1. void d() { a=5; }
  2. void d() { b(); }
  3. void d() { c(); }

Soit quatre variantes de la méthode Z::e(), les 
codes suivants sont-ils compilables ?
    4. void e() { x.a=5; }
  5. void e() { x.b(); }
  6. void e() { x.c(); }
  7. void e() { x.d(); }

Le code de la méthode X::c() est-il compilable ?
    8. void c() {
       X x = new X();
       x.b();
    }

χ
χ

χ
χ

χ

√

χ

√

Quiz
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Visibilité

■ Règle : restreindre le plus possible la visibilité
■ Intention

● Sécuriser la représentation interne des classes 
● Profiter du compilateur pour garantir l’encapsulation

Règle intangible

Pour assurer l’encapsulation
les attributs et associations

sont TOUJOURS privés
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(b) Portée des noms

■ Il est possible de donner un même nom à des méthodes de classes 
différentes

● La portée des noms est locale
● Le choix est levé à la compilation : liaison statique

Image

+ affiche()

Complexe

+ affiche()

Lien

+ affiche()



55
Quiz

Quelle méthode affiche() est exécutée (A, B ou C) ?
  Image i = new Image();
  i.affiche();
  Complexe c = new Complexe();
  c.affiche();

Image

+ affiche()

Complexe

+ affiche()

Lien

+ affiche()

A B C

A

B
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(c) Surcharge

■ Dans une même portée, donner un même nom de méthode mais 
avec des signatures différentes

● Signature d’une méthode :
▶ nom + paramètres (ni le type de retour, ni les exceptions)

● Le choix est levé à la compilation : liaison statique

Complexe

+ additionne(val: int)
+ additionne(val: float)
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Quiz

Quelle méthode additionne() est exécutée (A ou B) ?
  Complexe c = new complexe();
  c.additionne(5f);
  c.additionne(5);
  c.additionne(5d);

Complexe

+ additionne(val: int)
+ additionne(val: float)

A

B

χ

B

A
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(d) Redéfinition et Polymorphisme

■ Dans une même hiérarchie, donner la même signature à des 
méthodes de classes héritées

● La méthode exécutée est celle qui est la plus proche de la classe
réelle de l’objet appelant en remontant dans la hiérarchie.

A
+f()

B
+f()
+g()

C
+f()
+g()
+h()
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Quiz

Quelle méthode est exécutée (A, B ou C) ?
A a = new C();
a.f();
a.h();
a.g();
B b = (B)a;
b.f();
b.g();
b.h();
C c = (C)b;
c.h();
c.i();

A
+f()
+i()

B
+f()
+g()

C
+f()
+g()
+h()

χ

χ

χ
C

C
C

C

A
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Polymorphisme

■ Liaison dynamique
● Le choix de la méthode ne peut pas être décidé à la compilation 

mais seulement à l’exécution
● Quelle méthode f() est exécutée dans le code suivant ?

A getObject(int id) {
 switch(id) {
      case 1: return new B();
      case 2: return new C();
 }
}
A a = getObject(readInteger());
a.f();

A
+f()

B
+f()
+g()

C
+f()
+g()
+h()?
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Polymorphisme

■ Les classes dérivées ne peuvent pas diminuer la visibilité 
d’une méthode redéfinie

■ Pourquoi ?
A getObject(int id) {
 switch(id) {
      case 1: return new B();

case 2: return new C();
 }
}

A a = getObject(1);
a.f();

A
#f()

B
-f()

C
+f()
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<<abstract>>
Forme2d

+ getCouleur()

Carre Cercle

(e) Classe abstraite

■ Classe sans instance
● Interdire la création d’instances parce qu’elles

n’ont pas de sens
● La classe abstraite n’est pas assez complète pour

être instanciée

■ En Java
● Mot clé abstract devant la classe
● Code Java pour l’exemple
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(f) Méthode abstraite

■ Méthode sans code
● Obliger les sous-classes à définir le code

de la méthode
● Profiter du polymorphisme pour exécuter la

bonne méthode
● Exemple :

▶ Forme2d f = new Carre();
▶ double s = f.calculeSurface();

■ En Java
● Le mot clé abstract devant la méthode
● Pas de code dans le corps de la méthode
● Code Java pour l’exemple

<<abstract>>
Forme2d

+ getCouleur()
+ <<abstract>> calculeSurface()

Carre

+ calculeSurface()

Cercle

+ calculeSurface()
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Classe et méthode abstraites

■ Une classe avec une méthode abstraite est 
forcément abstraite

■ Une classe abstraite peut ne contenir que 
des méthodes concrètes

<<abstract>>
Forme2d

+ getCouleur()
+  <<abstract>> calculeSurface()

Carre

+calculeSurface()

Cercle

+calculeSurface()
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(g) Interface

■ Une classe avec uniquement des méthodes abstraites pures
● Ni attribut, ni association

■ Intention : définir un type
● Imposer la liste des méthodes publiques que

doivent, au moins, posséder toutes les classes
qui implémentent l’interface

<<Interface>>
Ordonnable

+isGreater(Ordonnable): boolean



66

Interface

■ Contrat entre deux classes :
● Une classe fournit un service
● Une classe utilise le service

Classification

Marathonian

+isGreater(Ordonnable): boolean

<<interface>>
Ordonnable

+isGreater(ordonnable)
*

City

+isGreater(Ordonnable): boolean

Flèche en pointillée
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Interface en Java

Classification

Marathonian

+isGreater(Ordonnable): boolean

<<interface>>
Ordonable

+isGreater(Ordonnable): boolean
*

■ La notation Java utilise le
mot clé Interface

● Code Java pour l’exemple
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Classification

Marathonian

 +isGreater(Ordonnable): boolean
 +print()

<<interface>>
Ordonnable

+isGreater(ordonnable)

   <<interface>>
Printable

+print()

*

■ Une classe peut implémenter plusieurs interfaces

■ On peut définir des références d’interface
● Ordonnable o = new Marathonian();

■ Mais, on ne peut pas créer d’instance d’interface
● Ordonnable o = new Ordonnable();

Interface
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MobileDevice

Batterie

MobilePhone

#lock()

Laptop

l#ock()

SmartPhone

<<virtual>>

AndroidPhone

Cas de l'héritage multiple

■ Questions
● Combien de batteries pour un téléphone ?
● Quelle méthode lock() est appelée  dans 

le bout de code suivant ?
t = new AndroidPhone()
t.lock();
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Avons nous besoin de l'héritage multiple ?

Etudiant

Personne

ChercheurEtudiant

inscrire()

Chercheur

suivreSeminaire()

EtudiantDoctorant

Etudiant

Personne

ChercheurEtudiant Chercheur

EtudiantDoctorant EtudiantSéminaire

+suivreSeminaire()
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Avons nous besoin de l'héritage multiple ?

Etudiant

Vehicule

ChercheurVéhiculeVoile VéhiculeMoteur

EtudiantVoilier

Etudiant

Vehicule

ChercheurVéhiculeVoile VéhiculeMoteur

EtudiantVoilier EtudiantMoteur
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Que retenir de ce chapitre ?

■ Dans l’utilisation de ces concepts, le développeur doit respecter deux 
principes fondamentaux :

● Restreindre le plus possible la visibilité des membres pour respecter le principe 
d’encapsulation et la sécurité.

▶ Ainsi les attributs sont TOUJOURS privés.
● Lever les choix avant la programmation.
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