
Chapitre
02

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Un paradigme : 
La Conception Orientée Objet

« N'importe quel programmeur peut écrire
du code que l'ordinateur comprend.

Les bons programmeurs écrivent du code
que les humains peuvent comprendre. »

Martin Fowler



25

Plan du chapitre

4
Associations

entre
classes

2
Les objets et le

principe
d’encapsulation)

1
Le paradigme

objet
3

Les classes



26

Association

■ Un objet ne doit pas être omniscient mais au contraire spécialisé
● Sinon cela revient à faire de la conception procédurale

■ Il doit donc faire appel aux services d’autres objets qu’il connaît par la 
liste de ses associations

: Imprimante

: QueueImpression: ServeurImpression

: Ordinateur

: Utilisateur

1: print(fichier)

2: print(fichier)

7: fichier imprimé

4: [imprim libre] print(fichier)

5: fichier imprimé

3: [imprim occupée] store(fichier)

6: print(fichier)



27

Association

■ Pour qu’un objet puisse utiliser les services d’un autre objet, il faut 
qu’il connaisse son emplacement mémoire

● C’est le rôle des associations
■ Association

● Définie par la classe (réserve un pointeur en mémoire pour les objets)
● Instanciée par les objets de la classe (met la valeur du pointeur)

Personne Entreprise

Personne



28

Code Java

■ En Java, les associations sont implémentées par des données 
membres

● Mais les associations ne sont pas des attributs

Personne Entreprise



29

Décoration des associations

■ Intention de la décoration
● documenter l’association
● donner des directives d’implémentation

■ 3 types de décoration
a) Navigabilité
b) Rôle
c) Multiplicité



30

a) Navigabilité

■ Navigabilité: sens de l’association
● Notation : flèche au bout du trait

Personne Entreprise

Personne Entreprise

Personne Entreprise

Personne Entreprise



31

b) Rôle

■ Rôle : sémantique de l’association
● À chaque extrémité de l’association

Personne Entrepriseemployeuremployé



32

Code Java

■ En Java, le rôle donne le nom de l’association

Personne Entrepriseemployeuremployé



33

c) Multiplicité

■ Cardinalité à chaque extrémité de la navigabilité

Personne Entreprise

1 Un et un seul objet dans l’association (par défaut)

0..1 Zéro ou un objet

M..N De M à N objets

* De zéro à plusieurs objets

1..* De 1 à plusieurs objets

N Exactement N objets

multiplicité



34

Code Java

■ En Java, la multiplicité est implémentée par 
● une donnée membre (≤ 1) 
● un tableau de données membres ou une liste de données membres (> 1) 

Personne Entrepriseemployeuremployés

3 1



35

Importance de la multiplicité

Exemple

Relation de mariage



36

Typage d’association

■ Intention du typage
● Ajouter de la sémantique à la modélisation
● Donner des directives d’implémentation

■ 3 types d’association
a) Standard
b) Agrégation
c) Composition



37

(a) Association : standard

■ Sémantique : connaît (pour utiliser les services)
■ Exemple : professeur - élève

Professeur Eleve



38

(b) Association : agrégation

■ Sémantique : possède (relation ensembliste)
■ Exemples :

■ Notation : losange creux

Relation Exemple

Composé / Composant Voiture / Roues

Collection / Élément Forêt / Arbres

Espace / Position Désert / Oasis

Événement / Étape Document / Chapitre

Voiture Roue
4



39

Agrégation en Java

■ Implication en Java
● Il faut ajouter les deux opérations suivantes dans la classe agrégat :

▶ add(element), remove(element) 



40

(c) Association : composition

■ Sémantique : est constitué de (relation compositionnelle)
● L’objet composite a la responsabilité de l’existence et du stockage de l’objet 

composé

● Notation : losange plein

Relation Exemple

Corps / Portion Corps / Tête

Matière / Substance Eau / Hydrogène

Activité / Phase Achat / Paiement

Corps Tête
1



41

Composition en Java

■ Conséquence sur le code
● Ajouter du code dans la classe Composite qui crée et détruit les objets de la 

classe Composant



42

Quiz

■ Éleveur → Cheval

■ Joker → Cheval

■ Cheval → Tête

■ Cheval → Cœur

■ Cheval → Selle

■ École → Étudiant

■ Carte mère → microprocesseur

■ GAB → Billet



43

Plan du chapitre

5
Héritage

et
polymorphisme

2
Les objets et le

principe
d’encapsulation)

3
Les classes

4
Associations

entre
classes

1
Le paradigme

objet



44

(2) Héritage

■ Relation de subsomption
● Une classe hérite de tous les éléments d’un superclasse

SuperClasse

SousClasse



45

Héritage

■ Intention 1 : généralisation
■ Exemple : Formes géométriques

● Toutes les formes possèdent une dimension et une position avec la même 
sémantique

● Toutes les formes possèdent une méthode deplace() avec la même 
sémantique

● → On peut les factoriser dans une super-classe Forme

Rectangle
dimension = 2
position=(0,0)
void deplace()

Cercle
dimension = 2
position = (10,30)
void deplace()

Forme

Cercle Rectangle



46

Héritage

■ Intention 2 : spécialisation
■ Exemple :

● Un carré est un cas particulier de rectangle

Forme

Rectangle

Carre

Forme

Ligne

Point



47

Héritage en Java

■ L’héritage est implémenté par le mot 
clé extends

Forme

position: Point

deplace() : void

Rectangle Cercle

Carre



48

Transtypage

■ Upcasting : surclassement
■ Downcasting : sous-classement

Forme

Rectangle

Carre



49

Quiz transtypage

■ Forme c1 = new Carre();
■ Rectangle c2 = new Carre();
■ Carre c3 = new Rectangle();
■ Forme r = new Rectangle();
■ Rectangle r1 = (Rectangle)r;
■ Carre c = (Carre)r;

Forme

Rectangle

Carre

χ

√

√

√

√

χ


	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

