02

Chapitre

Un paradigme :
La Conception Orientée Objet

112AC1 : Génie logiciel et Conception orientée objet
Régis Clouard, ENSICAEN - GREYC

« N'importe quel programmeur peut écrire
du code que |'ordinateur comprend.

Les bons programmeurs écrivent du code
qgue les humains peuvent comprendre. »

k“l‘h’“ rAlllIAu

1
Le paradigme
objet

4
Associations
entre
classes

Plan du chapitre

2
Les objets et le
principe
d'encapsulation)

3
Les classes

Association

26

= Un objet ne doit pas étre omniscient mais au contraire spécialisé

* Sinon cela revient a faire de la conception procédurale
= || doit donc faire appel aux services d’autres objets qu’il connait par la
liste de ses associations

1: print(fichier)

—

X

. Utilisateur

: Ordinateur

: Imprimante

4: [imprim libre] Drint(fichia

AN
7: fichier imDrimé‘ l

: Serveurlmpression

2: print(fichier)
/ P 5: fichier imprimé

A

3: [imprim occupée] store(fichier)

—»

<€

6: print(fichier)

: Queuelmpression

Association

= Pour gu’un objet puisse utiliser les services d’'un autre objet, il faut
gu’il connaisse son emplacement mémoire
* (’est le réle des associations

= Association
e Définie par la classe (réserve un pointeur en mémoire pour les objets)
e |nstanciée par les objets de la classe (met la valeur du pointeur)

Personne > Entreprise

K-
Personne '

Code Java

= En Java, les associations sont implémentées par des données

membres
* Mais les associations ne sont pas des attributs

Personne Entreprise

Décoration des associations

29

" |ntention de la décoration
e documenter I'association
e donner des directives d'implémentation

= 3types de décoration
a) Navigabilité
b) Role
c) Multiplicité

a) Navigabilité

30

= Navigabilité: sens de 'association
* Notation : fleche au bout du trait

Personne Entreprise
Personne > Entreprise
Personne K Entreprise
Personne K > Entreprise

b) Role

31

= RoOle : sémantique de I'association

e A chaque extrémité de I'association

Personne

employé

employeur

Entreprise

Code Java

32

" EnJava, le role donne le nom de I'association

‘ Personne |emp|oyé emp|0yeur| Entreprise

c) Multiplicité

33

= Cardinalité a chaque extrémité de la navigabilité

Personne I Entreprise

|)
|

I multiplicité

Un et un seul objet dans I'association (par défaut)

Zéro ou un objet

De M a N objets

De zéro a plusieurs objets

De 1 a plusieurs objets

Exactement N objets

Code Java

= En Java, la multiplicité est implémentée par

une donnée membre (< 1)

un tableau de données membres ou une liste de données membres (> 1)

Personne

employés

employeur

Entreprise

3

1

34

Importance de la multiplicité

Exemple

Relation de mariage

35

Typage d’association

36

= |ntention du typage
* Ajouter de la sémantique a la modélisation
* Donner des directives d'implémentation

= 3types d’association
a) Standard
b) Agrégation
c) Composition

(a) Association : standard

= Sémantique : connait (pour utiliser les services)
= Exemple : professeur - éléeve

Professeur > Eleve

(b) Association : agrégation

38

" Sémantique : posséde (relation ensembliste)

= Exemples:

Relation

Exemple

Compose / Composant

Voiture / Roues

Collection / Elément

Forét / Arbres

Espace / Position

Désert / Oasis

Evénement / Etape

Document / Chapitre

= Notation : losange creux

Voiture

> Roue

Agrégation en Java

39

= |mplication en Java
* || faut ajouter les deux opérations suivantes dans la classe agrégat :
» add(element), remove(element)

(c) Association : composition

= Sémantique : est constitué de (relation compositionnelle)
* |'objet composite a la responsabilité de I'existence et du stockage de l'objet

COMpPOSE
Relation Exemple
Corps / Portion Corps / Téte
Matiere / Substance Eau / Hydrogene
Activité / Phase Achat / Paiement

* Notation : losange plein

Corps @ > Téte

Composition en Java

41

= Conséquence sur le code
* Ajouter du code dans la classe Composite qui crée et détruit les objets de la
classe Composant

42

Eleveur = Cheval

Joker = Cheval

C
C
C

NEVA

NEVa

NEVA

— Téte
— Coaur

— Selle

Ecole = Etudiant

Carte méere = microprocesseur

GAB — Billet

1
Le paradigme
objet

Plan du chapitre

3
2 Les classes
Les objets et le
principe

d'encapsulation)

4
Associations
entre
classes

5
Héritage
et
polymorphisme

43

(2) Héritage

= Relation de subsomption

Une classe hérite de tous les éléments d’un superclasse

SuperClasse

i

SousClasse

44

Héritage

45

" |ntention 1 : généralisation
= Exemple : Formes géométriques

* Toutes les formes possedent une dimension et une position avec la méme

sémantique

e Toutes les formes possédent une méthode deplace() avecla méme

sémantique
* — On peut les factoriser dans une super-classe Forme

Rectangle Cercle Forme
dimension =2 dimension =2
position=(0,0) position = (10,30) | & |
void deplace() void deplace() Cercle

Rectangle

Héritage

" |ntention 2 : spécialisation
= Exemple:

Un carré est un cas particulier de rectangle

Forme

i

Rectangle

i

Carre

46

Héritage en Java

47

" |'héritage est implémenté par le mot
clé extends

Forme

position: Point

deplace() : void

1

Rectangle

Cercle

i

Carre

Transtypage

48

= Upcasting : surclassement
= Downcasting : sous-classement

Forme

I

Rectangle

?

Carre

Quiz transtypage

49

Forme c1 = new Carre();
Rectangle c2 = new Carre();
Carre c3 = new Rectangle();
Forme r = new Rectangle();
Rectangle r1 = (Rectangle)r;
Carre c = (Carre)r;

Xl <L XL <

Forme

I

Rectangle

|

Carre

	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

