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Chapitre

Un paradigme :
La Conception Orientée Objet

112AC1 : Génie logiciel et Conception orientée objet
Régis Clouard, ENSICAEN - GREYC

« N'importe quel programmeur peut écrire
du code que |'ordinateur comprend.

Les bons programmeurs écrivent du code
qgue les humains peuvent comprendre. »

k“l‘h’“ rAlllIAu
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Association
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= Un objet ne doit pas étre omniscient mais au contraire spécialisé

* Sinon cela revient a faire de la conception procédurale
= || doit donc faire appel aux services d’autres objets qu’il connait par la
liste de ses associations

1: print(fichier)

—

X

. Utilisateur

: Ordinateur

: Imprimante

4: [imprim libre] Drint(fichia

AN
7: fichier imDrimé‘ l

: Serveurlmpression

2: print(fichier)
/ P 5: fichier imprimé

A

3: [imprim occupée] store(fichier)

—»

<€

6: print(fichier)

: Queuelmpression




Association

= Pour gu’un objet puisse utiliser les services d’'un autre objet, il faut
gu’il connaisse son emplacement mémoire
* (’est le réle des associations

= Association
e Définie par la classe (réserve un pointeur en mémoire pour les objets)
e |nstanciée par les objets de la classe (met la valeur du pointeur)

Personne > Entreprise

K-
Personne '




Code Java

= En Java, les associations sont implémentées par des données

membres
* Mais les associations ne sont pas des attributs

Personne Entreprise




Décoration des associations
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" |ntention de la décoration
e documenter I'association
e donner des directives d'implémentation

= 3types de décoration
a) Navigabilité
b) Role
c) Multiplicité



a) Navigabilité
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= Navigabilité: sens de 'association
* Notation : fleche au bout du trait

Personne Entreprise
Personne > Entreprise
Personne K Entreprise
Personne K > Entreprise




b) Role
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= RoOle : sémantique de I'association

e A chaque extrémité de I'association

Personne

employé

employeur

Entreprise




Code Java
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" EnJava, le role donne le nom de I'association

‘ Personne |emp|oyé emp|0yeur| Entreprise




c) Multiplicité
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= Cardinalité a chaque extrémité de la navigabilité

Personne I Entreprise

| )
|

I multiplicité

Un et un seul objet dans I'association (par défaut)

Zéro ou un objet

De M a N objets

De zéro a plusieurs objets

De 1 a plusieurs objets

Exactement N objets




Code Java

= En Java, la multiplicité est implémentée par

une donnée membre (< 1)

un tableau de données membres ou une liste de données membres (> 1)

Personne

employés

employeur

Entreprise

3

1
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Importance de la multiplicité

Exemple

Relation de mariage
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Typage d’association
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= |ntention du typage
* Ajouter de la sémantique a la modélisation
* Donner des directives d'implémentation

= 3types d’association
a) Standard
b) Agrégation
c) Composition



(a) Association : standard

= Sémantique : connait (pour utiliser les services)
= Exemple : professeur - éléeve

Professeur > Eleve




(b) Association : agrégation
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" Sémantique : posséde (relation ensembliste)

= Exemples:

Relation

Exemple

Compose / Composant

Voiture / Roues

Collection / Elément

Forét / Arbres

Espace / Position

Désert / Oasis

Evénement / Etape

Document / Chapitre

= Notation : losange creux

Voiture

> Roue




Agrégation en Java
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= |mplication en Java
* || faut ajouter les deux opérations suivantes dans la classe agrégat :
» add(element), remove(element)



(c) Association : composition

= Sémantique : est constitué de (relation compositionnelle)
* |'objet composite a la responsabilité de I'existence et du stockage de l'objet

COMpPOSE
Relation Exemple
Corps / Portion Corps / Téte
Matiere / Substance Eau / Hydrogene
Activité / Phase Achat / Paiement

* Notation : losange plein

Corps @ > Téte




Composition en Java

41

= Conséquence sur le code
* Ajouter du code dans la classe Composite qui crée et détruit les objets de la
classe Composant
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Eleveur = Cheval

Joker = Cheval

C
C
C

NEVA

NEVa

NEVA

— Téte
— Coaur

— Selle

Ecole = Etudiant

Carte méere = microprocesseur

GAB — Billet
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(2) Héritage

= Relation de subsomption

Une classe hérite de tous les éléments d’un superclasse

SuperClasse

i

SousClasse

44




Héritage
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" |ntention 1 : généralisation
= Exemple : Formes géométriques

* Toutes les formes possedent une dimension et une position avec la méme

sémantique

e Toutes les formes possédent une méthode deplace() avecla méme

sémantique
* — On peut les factoriser dans une super-classe Forme

Rectangle Cercle Forme
dimension =2 dimension =2
position=(0,0) position = (10,30) | & |
void deplace() void deplace() Cercle

Rectangle




Héritage

" |ntention 2 : spécialisation
= Exemple:

Un carré est un cas particulier de rectangle

Forme

i

Rectangle

i

Carre

46




Héritage en Java
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" |'héritage est implémenté par le mot
clé extends

Forme

position: Point

deplace() : void

1

Rectangle

Cercle

i

Carre




Transtypage
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= Upcasting : surclassement
= Downcasting : sous-classement

Forme

I

Rectangle

?

Carre




Quiz transtypage
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Forme c1 = new Carre();
Rectangle c2 = new Carre();
Carre c3 = new Rectangle();
Forme r = new Rectangle();
Rectangle r1 = (Rectangle)r;
Carre c = (Carre)r;

Xl <L XL <

Forme

I

Rectangle

|

Carre
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