
Chapitre
02

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Un paradigme :
La Conception Orientée Objet

« N'importe quel programmeur peut écrire
du code que l'ordinateur comprend.

Les bons programmeurs écrivent du code
que les humains peuvent comprendre. »

Martin Fowler

2

Plan du chapitre

1
Le paradigme

objet

3

Paradigmes de programmation

■ Les 5 principaux paradigmes de programmation
1) Assemblage : assembleur
2) Procédural : C (le solfège de l’informaticien)
3) Fonctionnel : Scala, Haskel, Clojure, Clos
4) Objet : Java (1991), C++ (1983), C#, (Javascript), Objective C, D, PHP, Python,

Rust, Ruby, Dart
5) Logique : Prolog

■ Autres :
● De script : Shell
● Pile : Forth
● Concurrence : Ocam, C//
● Événementiel : Scratch, Simula, (Javascript)
● etc

4

Paradigme procédural vs Paradigme objet

■ Procédural
● Point de vue sur les opérations
● Les données sont inertes

■ Programme

■ Objet
● Point de vue sur les données
● Les données sont animées

■ Programme

■ Deux points de vue duaux sur la conception

appeler_ascenseur

ouvrir_portefermer_porte descendreinitialiser_timer

clignoter_voyant descendre_ascenseur

fermer

aller au RDC

:Porte

:BoutonRDC

:Voyant :Cabine

clignoter

Graphe d’appels Diagramme de collaboration

5

Exemple

Comptage des étudiants
présents en cours

Paradigme procédural vs Paradigme objet

6

Conception procédurale vs Conception objet

■ Algorithmique
● Question à résoudre : Que veut-

on faire ?
● Réponse : le graphe d'appels des

procédures

■ Modélisation
● Question à résoudre : De quoi

parle t-on ?
● Réponse : la liste des objets avec

les bons services

7

Conception orientée objet (COO)

Conception orientée objet :
Si je disposais d’un chapeau magique, quel type de données voudrais-
je voir sortir du chapeau pour m’aider à résoudre le problème ?

8

Exemple

Guichet automatique de billets
(GAB ou ATM)

Conception orientée objet

9

Conception procédurale vs Conception objet

■ Algorithmique
● Avantages

▶ Proche de la représentation
machine

● Limites
▶ Inaccessible aux clients
▶ Inadaptée à la complexité des

gros logiciels

■ Modélisation
● Avantages

▶ Adaptée aux gros logiciels :
approche cartésienne de la
conception

▶ Implémentation repoussée le
plus tard possible

▶ Accessible aux clients
● Limite

▶ Vision fractionnée du logiciel

10

Programmation procédurale vs
Programmation orientée objet

■ La différence ne concerne que quelques mots clés
▶ 6 mots clés suffisent pour passer du C au Java :
class, extends, implements, interface, new, public

● Mais ce sont deux paradigmes différents
■ Conséquence :

● Le paradigme objet ne s’apprend pas par le langage

11

Programmation procédurale vs
Programmation orientée objet

■ En C ■ En Java

■ Exemple : parcours d’une chaîne de caractères pour lui appliquer un
traitement

12

Concepts de la conception objet

■ La conception orientée objet s'appuie sur 5 concepts :
1) Objet et principe d’encapsulation
2) Classe
3) Associations
4) Héritage
5) Polymorphisme

13

Plan du chapitre

2
Les objets et le

principe
d’encapsulation

1
Le paradigme

objet

14

Notion d'objet

■ Prosaïquement
● Objet ≅ structure en C incluant des données et des pointeurs sur des

procédures

■ Par exemple une voiture
at_013_sr: Car

color = blue
quantity= 42 l
power = 100 hp
move()
stop()
refuel()

typedef struct s_car {
int color;
int quantity;
int power;

void (*move)();
void (*stop)();
void (*refuel)(int);

} Car;

typedef struct s_car {
int color;
int quantity;
int power;

void (*move)();
void (*stop)();
void (*refuel)(int);

} Car;

Car at_01_sr;

at_01_sr.power = 110;
at_01_sr.refuel(10);

Car at_01_sr;

at_01_sr.power = 110;
at_01_sr.refuel(10);

15

Notion d'objet

■ Conceptuellement
● Objet = propriétés + services

● Propriété (Attribut) : donnée membre
▶ Possédant une valeur
▶ Pouvant évoluer au cours du temps

● Service (Méthode) : procédure membre
▶ Utilisant potentiellement les données membres pour

fonctionner
▶ Déclenchée par appel explicite à partir de l’objet

at-013-sr: Car

color = blue
quantity= 42 l
power = 100 hp

move()
stop()
refuel()

16

Principe d’encapsulation

■ objet = fournisseur de services
 ≠ structure de données

CD/DVD Drive

Services

17

Principe d’encapsulation

■ Éprouvez la différence essentielle entre les deux types d’instructions

1)at_01_sr.color = "blue";
color = at_01_sr.color;

2)at_01_sr.setColor("blue");
color = at_01_sr.getColor();

18

Principe d’encapsulation

■ Les attributs (propriétés) ne sont pas une préoccupation de la
conception mais de la programmation

■ Un attribut n’existe que parce qu’un service en a besoin

En conception, ne me parlez plus d’attributs
(sauf à ma demande)

19

Plan du chapitre

3
Les classes

1
Le paradigme

objet 2
Les objets et le

principe
d’encapsulation)

20

Classe

■ Intention
● Représente un concept du domaine
● Génératrice d’objets (eqv. structure en C)

■ Nom : substantif au singulier
■ Casse : PascalCase
■ Représentation UML

 Carre

21

Attribut / Propriété

■ Intention
● Stocke une propriété de l’objet

■ Nom : substantif
■ Type : primitifs ou assimilés
■ Casse : camelCase
■ Représentation UML Carre

taille: float

22

Méthode (Service)

■ Intention
● Propose un service

■ Nom : verbe
■ Casse : camelCase
■ Représentation UML Carre

calculeSurface(): float

23

Implémentation en Java

Exemple

Cas de Voiture

at_013_sr: Car

color = blue
quantity= 42 l
power = 100 hp
move()
stop()
refuel()

instanceOf

 Car

color
quantity
power

move()
stop()
refuel()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

