
Chapitre
01

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Introduction au génie logiciel

« Si les ouvriers construisaient les bâtiments
comme les développeurs écrivent leurs programmes,

le premier pic-vert venu aurait détruit toute civilisation. »
Gerald Weinberg
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Organisation de l’enseignement

■ Volume horaire
● CM : 11 h
● TD : 14 h
● Pas de TP, mais

▶ Lien avec le cours « Java et Programmation objet »
▶ Katas et Coding dojos

■ Plateforme pédagogique (course n°60)
● Ressources du cours

▶ Polycopié par chapitre
▶ Présentation par CM
▶ Katas et Coding Dojos
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Organisation de l’enseignement

■ Examen
● Le cahier de TD tient lieu d’annales d’examen
● Il portera sur tout le polycopié (les diapositives n’en présentent qu’une partie)
● Document autorisé : une feuille A4 recto/verso manuscrite

■ Discipline
● Pas de vérification de présence en cours/TD
● Respect de l’enseignant !
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Question du jour

■ Qu’est ce que le génie logiciel ?
● « Le génie logiciel est une science de génie industriel qui étudie les méthodes de 

travail et les bonnes pratiques des ingénieurs qui développent des logiciels. » 
Wikipedia
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Plan du chapitre

1
Pourquoi

un cours sur le
génie logiciel ?
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Pourquoi un cours sur le génie logiciel ?

■ La spécialité informatique de l’ENSICAEN forme des ingénieurs 
développeurs logiciels

● alias Architectes logiciels

● Ce sont des professionnels qui 
▶ conçoivent
▶ déploient                        les systèmes logiciels
▶ maintiennent
▶ administrent

■ Le génie logiciel est un enseignement de base pour les métiers liés au 
logiciel
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Écosystème du développement logiciel

Project Owner
Maîtrise d’ouvrage (MOA)

Development Unit
Maîtrise d’œuvre (MOE)

IT Operation Unit
Unité de production
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Pour qui ce cours ?

■ Pour ceux qui choisiront de développer (MOE, Unité de production) :
● Trouver sa place dans la gestion de projet informatique.
● Se forger une culture du développement logiciel de haut niveau.
● Prendre conscience de l’importance du code et des tests.

■ Pour ceux qui choisiront de ne pas développer (MOA, Conseil, Avant-
vente, Ingénierie produit) :

● Être en mesure de formuler des besoins et de suivre un développement de 
logiciel.

● Comprendre comment sont construits les ouvrages à spécifier et apprécier 
leurs contraintes.

● Gagner en crédibilité face aux personnes de la MOE.
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Pourquoi un cours sur le génie logiciel ?

■ Pourquoi ne pas se contenter d’un cours de programmation pour 
développer des logiciels ?
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Question

■ Soit le programme d’addition de deux nombres entiers suivant :

■ Est-ce un bon code de programme ?

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

  int i1, i2; // The 2 integer operands
  scanf("%d", &i1); // Read the 2 integers

  scanf("%d", &i2);

  printf("Résultat = %d\n", i1 + i2); // Display the result

  return 0;

}

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

  int i1, i2; // The 2 integer operands
  scanf("%d", &i1); // Read the 2 integers

  scanf("%d", &i2);

  printf("Résultat = %d\n", i1 + i2); // Display the result

  return 0;

}
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Question

■ Soit le programme d’addition de deux nombres entiers :

■ Est-ce un bon code de logiciel ?

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

  int i1, i2; // The 2 integer operands
  scanf("%d", &i1); // Read the 2 integers

  scanf("%d", &i2);

  printf("Résultat = %d\n", i1 + i2); // Display the result

  return 0;

}

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

  int i1, i2; // The 2 integer operands
  scanf("%d", &i1); // Read the 2 integers

  scanf("%d", &i2);

  printf("Résultat = %d\n", i1 + i2); // Display the result

  return 0;

}
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Confusion 
programmation / développement

■ Analogie avec le génie civil
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Confusion 
programmation / développement

■ Programmation (Maçonnerie) : accessible à tous
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Confusion 
programmation / développement

■ Développement (Architecture) : réservé aux professionnels
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Confusion 
programmation / développement

■ Développement (Architecture) : réservé aux professionnels
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Confusion
programme / logiciel

■ Les profanes créent des programmes
■ Les développeurs créent des logiciels

■ Quelles sont les différences entre programme et logiciel ?
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Différences
programme / logiciel

1. Utilisateur
● Programme : un utilisateur averti et bienveillant
● Logiciel : l’utilisateur est un « client »

2. Portabilité
● Programme : un OS
● Logiciel : tous les OS

3. Complexité
● Programme : résident sur 1 seul nœud 
● Logiciel : réparti sur le réseau

4. Taille des sources
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Différences programme / logiciel :
La taille des sources

■ Unité de mesure de la taille d’un logiciel :
● LOC : lines of code

▶ 1 MLOC : 106 LOC
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Différences programme / logiciel :
La taille des sources

■ Programme
● Quelques KLOC

■ Logiciel
● Commandes de vol A380 : 1 MLOC
● OS Android : 15 MLOC
● Linux kernel 5.8 (2020): 53 MLOC
● Facebook : 62 MLOC
● Windows 10: 80 MLOC
● Google (tous les services Internet) : 2GLOC 
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Conséquence de la taille :
Développement en équipe

■ La taille des logiciels oblige à un travail en équipe
● Unité de mesure : 

▶ année-homme (man-year)
▶ ou mois-homme
▶ ou heure-homme … 

● Par exemple : 
▶ Algorithme de recherche de Google est estimé à 1 000 années-hommes
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Conséquence de la taille :
Coût de développement

■ La taille du logiciel entraîne des temps de développement et des 
coûts élevés

● Combien de temps pour développer ce bout de code ?
● Combien facturer le développement de ce bout de code ?

static void sort( int[] array ) {  
   for (int i = 0; i < array.length - 1; i++) {
      for (int j = 0; j < array.length – 1 - i; j++) {
         if (array[j] > array[j + 1]) {
             int temp = array[j];
             array[j] = array[j+1];
             array[j+1] = temp;
         }
      }
   }
}

static void sort( int[] array ) {  
   for (int i = 0; i < array.length - 1; i++) {
      for (int j = 0; j < array.length – 1 - i; j++) {
         if (array[j] > array[j + 1]) {
             int temp = array[j];
             array[j] = array[j+1];
             array[j+1] = temp;
         }
      }
   }
}
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Conséquence de la taille :
Coût de développement

■ Ordre de grandeur en France :
● 1 année-homme ≈ 1650 h
● 1h ingénieur ≈ 50 €
● Productivité ≈ 2 à 5 LOC/h (4 à 9 KLOC /an)

■ Donc, le code coûte :
● Temps : 1 heure-homme
● Prix : 50 €

pour traverser tout le cycle
de développement

static void sort( int[] array ) {  
   for (int i = 0; i < array.length - 1; i++) {
      for (int j = 0; j < array.length – 1 - i; j++) {
         if (array[j] > array[j + 1]) {
             int temp = array[j];
             array[j] = array[j+1];
             array[j+1] = temp;
         }
      }
   }
}

static void sort( int[] array ) {  
   for (int i = 0; i < array.length - 1; i++) {
      for (int j = 0; j < array.length – 1 - i; j++) {
         if (array[j] > array[j + 1]) {
             int temp = array[j];
             array[j] = array[j+1];
             array[j+1] = temp;
         }
      }
   }
}
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Différences programme / logiciel

1. Utilisateur
2. Portabilité
3. Complexité
4. Taille des sources
5. Responsabilité des dysfonctionnements
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Différences programme / logiciel :
La responsabilité des dysfonctionnements

■ Programme
● L’utilisateur accepte les conséquences des dysfonctionnements lors de 

l’utilisation du programme
■ Logiciel

● Les développeurs sont tenus responsables par les utilisateurs des 
conséquences néfastes de l’utilisation du logiciel.

● Les développeurs doivent proscrire toutes les conséquences néfastes de 
l’utilisation du logiciel :

▶ Perte de données
▶ Résultats erronés
▶ Vol de données
▶ Utilisation frauduleuse
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Conséquence comique
d’un dysfonctionnement

■ Windows 95
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Conséquence préoccupante
d’un dysfonctionnement

■ Bug sur les serveurs Microsoft Exchange en 2022
● Les utilisateurs n’avaient plus accès à leur mail suite au 

changement d’année
● Le moteur d’analyse des malwares était bugué

▶ Codage des dates sur un entier signé (31 bits)
▶ Or 2^31 = 2 147 483 648 ne peut pas coder les dates postérieures à 2021
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Conséquence tragique
d’un dysfonctionnement

■ Mort tragique d’une patiente de 72 ans à l'hôpital de Versailles en 
novembre 2011

● Son allergie à un antibiotique, l'amoxicilline, était bien notée dans son dossier 
médical, mais le logiciel utilisé pour les prescriptions n'a pas intégré cette 
donnée
→ Ne jamais ajouter d’élément dans l’UI qui laisse à penser que la 
fonctionnalité associée est implémentée
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Différences programme / logiciel

1. Utilisateur
2. Portabilité
3. Complexité
4. Taille des sources
5. Responsabilité des dysfonctionnements
6. Maintenance
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Différences programme / logiciel :
Maintenance

■ Un logiciel ne s’use pas
● Pas de logiciel sans maintenance
● Sans maintenance un logiciel a une durée de vie estimée de 6 mois
● La maintenance doit être préparée dès la conception
● L’expérience montre même que la majeure partie du travail de développement 

commence après la livraison du logiciel au client

 … mais il se détériore
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Conclusion en 1968

■ Un programme peut se réaliser de façon empirique
■ Un logiciel ne peut pas se développer sans une méthode de gestion 

de projet et un haut niveau d’expertise reposant sur le génie logiciel
● Le développement est un projet étalé sur plusieurs mois
● Le projet nécessite la collaboration de plusieurs personnes
● La tâche est complexe et compliquée
● La programmation ne représente qu’une très petite partie du logiciel

■ Développeur logiciel :
● Un métier à haut niveau d’expertise
● Un métier qui s’apprend
● L’auto-formation donne des programmeurs
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Génie logiciel (1968)

■ Le terme anglais « software engineering » a 
été inventé par une pionnière du génie 
logiciel : Margaret Hamilton

● Responsable de la partie logicielle
embarquée du projet Apollo de la NASA

● Le premier ingénieur en génie logiciel est une
ingénieure

Margaret Hamilton
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Génie logiciel (1968)

■ Génie
● Ensemble de pratiques régulées et basées sur des principes scientifiques et 

économiques (+ RSE et DD)
■ Génie logiciel

● Le génie logiciel postule donc que l’on peut appliquer le génie au logiciel
■ Source d’inspiration : le génie civil

● Le génie civil a démontré toute son efficacité depuis des millénaires
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Génie civil

■ La gestion de projet selon le génie civil :
● Découper le temps du projet en une suite de phases séquentielles

▶ Livrable : diagramme de Gantt / Pert
● Ne faire qu’une seule chose à la fois à chaque étape

▶ Métiers spécialisés
● Récolter le besoin avant de développer

▶ Livrable : cahier des charges
● Bien réfléchir avant d’agir

▶ Livrable : documentation de conception et de réalisation
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Génie logiciel

■ Les éléments de base du génie civil appliqué au génie logiciel :
● Une méthode de gestion de projet

▶ Planifier une organisation du temps pour le travail en équipe
● Un paradigme de conception

▶ Fournir les briques de base de la conception et les mécanismes pour les 
assembler

● Un formalisme de modélisation
Fournir un langage formel pour parler du code de manière abstraite et non 
ambiguë
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1/ Une méthode :
Le cycle en cascade

■ Découper le temps du projet en étapes séquentielles

Analyse des besoins

Conception

Codage

Tests
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1/ Une méthode :
Le cycle en cascade

Programmation

Test

Conception

Cahier des charges

MOA

MOE

■ Récolter le besoin avant de développer

Analyse des besoins
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1/ Une méthode :
Le cycle en cascade

Programmation

Test

Conception

Rédaction du 
cahier des charges

Rédaction du 
documentation
de conception
et de réalisation

Écriture du code
et des commentaires

■ Ne faire qu’une seule chose à chaque étape
● Il en résulte deux métiers dans la MOE

Analyse des besoins

ANALYSTE
(ingénieur)

PROGRAMMEUR
(technicien)
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2/ Un paradigme :
La conception procédurale

■ Graphe d’appel des procédures

Programme principalProgramme principal

Procédure 4Procédure 4

Procédure 2Procédure 2

Procédure 3Procédure 3

Procédure 1Procédure 1

Procédure 5Procédure 5
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3/ Un formalisme :
L’algorithmique

■ Bien réfléchir avant d’agir

■ Le premier programmeur est une programmeuse :
Ada Lovelace 

● Algorithme de calcul des nombres de la suite de Bernoulli

Ada Lovelace
vers 1843

∑
k=0

n−1

km
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Bilan en 2001

23 %

49 %

28 %
Projets échoués
Projets en difficulté
Projets réussis

Source : the Standish Group (2000)
35.000 projets étudiés

Échec du génie lo
giciel



Causes de l’échec
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Cause d’échec n°1 :
Suivre un plan coûte que coûte

■ Le cycle en cascade définit des étapes séquentielles précises
● Engagement sur plusieurs mois

▶ cf. diagramme prévisionnel de Gantt

● Conséquences
▶ La moindre modification du planning met le projet en danger

Analyse des besoins

Conception

Codage

Tests

temps



« Bon, les gars, il y a eu un accident au quai.
Une petite auto blanche est tombée à l'eau.
Qu'est ce qu'on fait ? »



« Pas de problème, on va appeler une grue
pour remonter l'automobile. »



« Ça va très bien, la voiture est toute petite,
dans une demi-heure tout est terminé."



« ARGH!!!! La grue est tombée aussi à l'eau
avec la petite voiture ! »



« Ça va vraiment mal.
Et là, qu'est ce qu'on fait ? »



« Pas de problème, on a appelé une autre grue,
une GROSSE celle-là. »



« Bon, la petite automobile est déjà sortie,
on aurait du appeler cette grue la première fois... »



« Il ne reste qu'à sortir la petite grue maintenant,
dans une demi-heure tout devrait être fini. »



« ARGHHHHHH !!! ENCORE !!!!!!!!! »



« Pas de problème, on a appelé une autre grue,
plus grosse encore.. »
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Un plan est rarement respecté

Programmation

Test

Conception

Analyse des besoins

■ Une amélioration
● Ajouter des allers-retours entre les phases
● Question : comment anticiper la durée des allers-retours dans la planification ?
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Cause d’échec n°2 :
Estimer la durée d’un projet

■ Déterminer la durée d’un projet en années-hommes est extrêmement 
difficile

● Trop d’aléas et d’incertitudes
● Pas de règles et pas de mesures systématiques
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Cause d’échec n°2 :
Estimer la durée d’un projet

■ Mythe de l’année-homme, cf. «The Mythical Man-Month», Fred Brooks, 1995
● Non-linéarité de la charge de travail (source Borland Software Corporation) :

● Note : 15 KLOC/année → 9 LOC/h
● Certaines tâches ne sont pas parallélisables :

▶ « Neuf femmes ne font pas un enfant en un mois »

Taille équipe Productivité par personne 
(KLOC/année)

Productivité de l’équipe 
(KLOC/année)

Gain

1 15.0 15.0

2 11.9 23.8 1.6 

10 7.0 69.6 4.6 

25 5.1 128.2 8.5
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Cause d’échec n°2 :
Estimer la durée d’un projet

■ Rattraper le retard
● Contrairement à l’intuition, ajouter des personnes à une équipe d'ingénieurs 

ne permet pas de rattraper le retard, au contraire :
▶ Les nouveaux ingénieurs doivent être formés par le anciens qui ne sont 

donc plus à leur tâche et le retard s’accroît encore
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