
Chapitre
01

Régis Clouard, ENSICAEN - GREYC
1I2AC1 : Génie logiciel et Conception orientée objet

Introduction au génie logiciel

« Si les ouvriers construisaient les bâtiments
comme les développeurs écrivent leurs programmes,

le premier pic-vert venu aurait détruit toute civilisation. »
Gerald Weinberg

2

Organisation de l’enseignement

■ Volume horaire
● CM : 11 h
● TD : 14 h
● Pas de TP, mais

▶ Lien avec le cours « Java et Programmation objet »
▶ Katas et Coding dojos

■ Plateforme pédagogique (course n°60)
● Ressources du cours

▶ Polycopié par chapitre
▶ Présentation par CM
▶ Katas et Coding Dojos

3

Organisation de l’enseignement

■ Examen
● Le cahier de TD tient lieu d’annales d’examen
● Il portera sur tout le polycopié (les diapositives n’en présentent qu’une partie)
● Document autorisé : une feuille A4 recto/verso manuscrite

■ Discipline
● Pas de vérification de présence en cours/TD
● Respect de l’enseignant !

4

Question du jour

■ Qu’est ce que le génie logiciel ?
● « Le génie logiciel est une science de génie industriel qui étudie les méthodes de

travail et les bonnes pratiques des ingénieurs qui développent des logiciels. »
Wikipedia

5

Plan du chapitre

1
Pourquoi

un cours sur le
génie logiciel ?

6

Pourquoi un cours sur le génie logiciel ?

■ La spécialité informatique de l’ENSICAEN forme des ingénieurs
développeurs logiciels

● alias Architectes logiciels

● Ce sont des professionnels qui
▶ conçoivent
▶ déploient les systèmes logiciels
▶ maintiennent
▶ administrent

■ Le génie logiciel est un enseignement de base pour les métiers liés au
logiciel

7

Écosystème du développement logiciel

Project Owner
Maîtrise d’ouvrage (MOA)

Development Unit
Maîtrise d’œuvre (MOE)

IT Operation Unit
Unité de production

8

Pour qui ce cours ?

■ Pour ceux qui choisiront de développer (MOE, Unité de production) :
● Trouver sa place dans la gestion de projet informatique.
● Se forger une culture du développement logiciel de haut niveau.
● Prendre conscience de l’importance du code et des tests.

■ Pour ceux qui choisiront de ne pas développer (MOA, Conseil, Avant-
vente, Ingénierie produit) :

● Être en mesure de formuler des besoins et de suivre un développement de
logiciel.

● Comprendre comment sont construits les ouvrages à spécifier et apprécier
leurs contraintes.

● Gagner en crédibilité face aux personnes de la MOE.

9
Pourquoi un cours sur le génie logiciel ?

■ Pourquoi ne pas se contenter d’un cours de programmation pour
développer des logiciels ?

10

Question

■ Soit le programme d’addition de deux nombres entiers suivant :

■ Est-ce un bon code de programme ?

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

 int i1, i2; // The 2 integer operands
 scanf("%d", &i1); // Read the 2 integers

 scanf("%d", &i2);

 printf("Résultat = %d\n", i1 + i2); // Display the result

 return 0;

}

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

 int i1, i2; // The 2 integer operands
 scanf("%d", &i1); // Read the 2 integers

 scanf("%d", &i2);

 printf("Résultat = %d\n", i1 + i2); // Display the result

 return 0;

}

11

Question

■ Soit le programme d’addition de deux nombres entiers :

■ Est-ce un bon code de logiciel ?

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

 int i1, i2; // The 2 integer operands
 scanf("%d", &i1); // Read the 2 integers

 scanf("%d", &i2);

 printf("Résultat = %d\n", i1 + i2); // Display the result

 return 0;

}

#include <stdio.h>
/** This program displays the result of adding of 2 integers */
int main() {

 int i1, i2; // The 2 integer operands
 scanf("%d", &i1); // Read the 2 integers

 scanf("%d", &i2);

 printf("Résultat = %d\n", i1 + i2); // Display the result

 return 0;

}

12

Confusion
programmation / développement

■ Analogie avec le génie civil

13

Confusion
programmation / développement

■ Programmation (Maçonnerie) : accessible à tous

14

Confusion
programmation / développement

■ Programmation (Maçonnerie) : accessible à tous

15

Confusion
programmation / développement

■ Programmation (Maçonnerie) : accessible à tous

16

Confusion
programmation / développement

■ Développement (Architecture) : réservé aux professionnels

17

Confusion
programmation / développement

■ Développement (Architecture) : réservé aux professionnels

18

Confusion
programme / logiciel

■ Les profanes créent des programmes
■ Les développeurs créent des logiciels

■ Quelles sont les différences entre programme et logiciel ?

19

Différences
programme / logiciel

1. Utilisateur
● Programme : un utilisateur averti et bienveillant
● Logiciel : l’utilisateur est un « client »

2. Portabilité
● Programme : un OS
● Logiciel : tous les OS

3. Complexité
● Programme : résident sur 1 seul nœud
● Logiciel : réparti sur le réseau

4. Taille des sources

20

Différences programme / logiciel :
La taille des sources

■ Unité de mesure de la taille d’un logiciel :
● LOC : lines of code

▶ 1 MLOC : 106 LOC

21

Différences programme / logiciel :
La taille des sources

■ Programme
● Quelques KLOC

■ Logiciel
● Commandes de vol A380 : 1 MLOC
● OS Android : 15 MLOC
● Linux kernel 5.8 (2020): 53 MLOC
● Facebook : 62 MLOC
● Windows 10: 80 MLOC
● Google (tous les services Internet) : 2GLOC

22

Conséquence de la taille :
Développement en équipe

■ La taille des logiciels oblige à un travail en équipe
● Unité de mesure :

▶ année-homme (man-year)
▶ ou mois-homme
▶ ou heure-homme …

● Par exemple :
▶ Algorithme de recherche de Google est estimé à 1 000 années-hommes

23

Conséquence de la taille :
Coût de développement

■ La taille du logiciel entraîne des temps de développement et des
coûts élevés

● Combien de temps pour développer ce bout de code ?
● Combien facturer le développement de ce bout de code ?

static void sort(int[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 for (int j = 0; j < array.length – 1 - i; j++) {
 if (array[j] > array[j + 1]) {
 int temp = array[j];
 array[j] = array[j+1];
 array[j+1] = temp;
 }
 }
 }
}

static void sort(int[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 for (int j = 0; j < array.length – 1 - i; j++) {
 if (array[j] > array[j + 1]) {
 int temp = array[j];
 array[j] = array[j+1];
 array[j+1] = temp;
 }
 }
 }
}

24

Conséquence de la taille :
Coût de développement

■ Ordre de grandeur en France :
● 1 année-homme ≈ 1650 h
● 1h ingénieur ≈ 50 €
● Productivité ≈ 2 à 5 LOC/h (4 à 9 KLOC /an)

■ Donc, le code coûte :
● Temps : 1 heure-homme
● Prix : 50 €

pour traverser tout le cycle
de développement

static void sort(int[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 for (int j = 0; j < array.length – 1 - i; j++) {
 if (array[j] > array[j + 1]) {
 int temp = array[j];
 array[j] = array[j+1];
 array[j+1] = temp;
 }
 }
 }
}

static void sort(int[] array) {
 for (int i = 0; i < array.length - 1; i++) {
 for (int j = 0; j < array.length – 1 - i; j++) {
 if (array[j] > array[j + 1]) {
 int temp = array[j];
 array[j] = array[j+1];
 array[j+1] = temp;
 }
 }
 }
}

25

Différences programme / logiciel

1. Utilisateur
2. Portabilité
3. Complexité
4. Taille des sources
5. Responsabilité des dysfonctionnements

26

Différences programme / logiciel :
La responsabilité des dysfonctionnements

■ Programme
● L’utilisateur accepte les conséquences des dysfonctionnements lors de

l’utilisation du programme
■ Logiciel

● Les développeurs sont tenus responsables par les utilisateurs des
conséquences néfastes de l’utilisation du logiciel.

● Les développeurs doivent proscrire toutes les conséquences néfastes de
l’utilisation du logiciel :

▶ Perte de données
▶ Résultats erronés
▶ Vol de données
▶ Utilisation frauduleuse

27

Conséquence comique
d’un dysfonctionnement

■ Windows 95

28

Conséquence préoccupante
d’un dysfonctionnement

■ Bug sur les serveurs Microsoft Exchange en 2022
● Les utilisateurs n’avaient plus accès à leur mail suite au

changement d’année
● Le moteur d’analyse des malwares était bugué

▶ Codage des dates sur un entier signé (31 bits)
▶ Or 2^31 = 2 147 483 648 ne peut pas coder les dates postérieures à 2021

29

Conséquence tragique
d’un dysfonctionnement

■ Mort tragique d’une patiente de 72 ans à l'hôpital de Versailles en
novembre 2011

● Son allergie à un antibiotique, l'amoxicilline, était bien notée dans son dossier
médical, mais le logiciel utilisé pour les prescriptions n'a pas intégré cette
donnée
→ Ne jamais ajouter d’élément dans l’UI qui laisse à penser que la
fonctionnalité associée est implémentée

30

Différences programme / logiciel

1. Utilisateur
2. Portabilité
3. Complexité
4. Taille des sources
5. Responsabilité des dysfonctionnements
6. Maintenance

31

Différences programme / logiciel :
Maintenance

■ Un logiciel ne s’use pas
● Pas de logiciel sans maintenance
● Sans maintenance un logiciel a une durée de vie estimée de 6 mois
● La maintenance doit être préparée dès la conception
● L’expérience montre même que la majeure partie du travail de développement

commence après la livraison du logiciel au client

 … mais il se détériore

32

Conclusion en 1968

■ Un programme peut se réaliser de façon empirique
■ Un logiciel ne peut pas se développer sans une méthode de gestion

de projet et un haut niveau d’expertise reposant sur le génie logiciel
● Le développement est un projet étalé sur plusieurs mois
● Le projet nécessite la collaboration de plusieurs personnes
● La tâche est complexe et compliquée
● La programmation ne représente qu’une très petite partie du logiciel

■ Développeur logiciel :
● Un métier à haut niveau d’expertise
● Un métier qui s’apprend
● L’auto-formation donne des programmeurs

33

Plan du chapitre

2
Création

du génie logiciel

1
Pourquoi

un cours sur le
génie logiciel ?

34

Génie logiciel (1968)

■ Le terme anglais « software engineering » a
été inventé par une pionnière du génie
logiciel : Margaret Hamilton

● Responsable de la partie logicielle
embarquée du projet Apollo de la NASA

● Le premier ingénieur en génie logiciel est une
ingénieure

Margaret Hamilton

35

Génie logiciel (1968)

■ Génie
● Ensemble de pratiques régulées et basées sur des principes scientifiques et

économiques (+ RSE et DD)
■ Génie logiciel

● Le génie logiciel postule donc que l’on peut appliquer le génie au logiciel
■ Source d’inspiration : le génie civil

● Le génie civil a démontré toute son efficacité depuis des millénaires

36

Génie civil

■ La gestion de projet selon le génie civil :
● Découper le temps du projet en une suite de phases séquentielles

▶ Livrable : diagramme de Gantt / Pert
● Ne faire qu’une seule chose à la fois à chaque étape

▶ Métiers spécialisés
● Récolter le besoin avant de développer

▶ Livrable : cahier des charges
● Bien réfléchir avant d’agir

▶ Livrable : documentation de conception et de réalisation

37

Génie logiciel

■ Les éléments de base du génie civil appliqué au génie logiciel :
● Une méthode de gestion de projet

▶ Planifier une organisation du temps pour le travail en équipe
● Un paradigme de conception

▶ Fournir les briques de base de la conception et les mécanismes pour les
assembler

● Un formalisme de modélisation
Fournir un langage formel pour parler du code de manière abstraite et non
ambiguë

38

1/ Une méthode :
Le cycle en cascade

■ Découper le temps du projet en étapes séquentielles

Analyse des besoins

Conception

Codage

Tests

39

1/ Une méthode :
Le cycle en cascade

Programmation

Test

Conception

Cahier des charges

MOA

MOE

■ Récolter le besoin avant de développer

Analyse des besoins

40

1/ Une méthode :
Le cycle en cascade

Programmation

Test

Conception

Rédaction du
cahier des charges

Rédaction du
documentation
de conception
et de réalisation

Écriture du code
et des commentaires

■ Ne faire qu’une seule chose à chaque étape
● Il en résulte deux métiers dans la MOE

Analyse des besoins

ANALYSTE
(ingénieur)

PROGRAMMEUR
(technicien)

41

2/ Un paradigme :
La conception procédurale

■ Graphe d’appel des procédures

Programme principalProgramme principal

Procédure 4Procédure 4

Procédure 2Procédure 2

Procédure 3Procédure 3

Procédure 1Procédure 1

Procédure 5Procédure 5

42

3/ Un formalisme :
L’algorithmique

■ Bien réfléchir avant d’agir

■ Le premier programmeur est une programmeuse :
Ada Lovelace

● Algorithme de calcul des nombres de la suite de Bernoulli

Ada Lovelace
vers 1843

∑
k=0

n−1

km

43

Plan du chapitre

1
Pourquoi

un cours sur le
génie logiciel ?

2
Création

du génie logiciel

3
Bilan

44

Bilan en 2001

23 %

49 %

28 %
Projets échoués
Projets en difficulté
Projets réussis

Source : the Standish Group (2000)
35.000 projets étudiés

Échec du génie lo
giciel

Causes de l’échec

46

Cause d’échec n°1 :
Suivre un plan coûte que coûte

■ Le cycle en cascade définit des étapes séquentielles précises
● Engagement sur plusieurs mois

▶ cf. diagramme prévisionnel de Gantt

● Conséquences
▶ La moindre modification du planning met le projet en danger

Analyse des besoins

Conception

Codage

Tests

temps

« Bon, les gars, il y a eu un accident au quai.
Une petite auto blanche est tombée à l'eau.
Qu'est ce qu'on fait ? »

« Pas de problème, on va appeler une grue
pour remonter l'automobile. »

« Ça va très bien, la voiture est toute petite,
dans une demi-heure tout est terminé."

« ARGH!!!! La grue est tombée aussi à l'eau
avec la petite voiture ! »

« Ça va vraiment mal.
Et là, qu'est ce qu'on fait ? »

« Pas de problème, on a appelé une autre grue,
une GROSSE celle-là. »

« Bon, la petite automobile est déjà sortie,
on aurait du appeler cette grue la première fois... »

« Il ne reste qu'à sortir la petite grue maintenant,
dans une demi-heure tout devrait être fini. »

« ARGHHHHHH !!! ENCORE !!!!!!!!! »

« Pas de problème, on a appelé une autre grue,
plus grosse encore.. »

57

Un plan est rarement respecté

Programmation

Test

Conception

Analyse des besoins

■ Une amélioration
● Ajouter des allers-retours entre les phases
● Question : comment anticiper la durée des allers-retours dans la planification ?

58

Cause d’échec n°2 :
Estimer la durée d’un projet

■ Déterminer la durée d’un projet en années-hommes est extrêmement
difficile

● Trop d’aléas et d’incertitudes
● Pas de règles et pas de mesures systématiques

59

Cause d’échec n°2 :
Estimer la durée d’un projet

■ Mythe de l’année-homme, cf. «The Mythical Man-Month», Fred Brooks, 1995
● Non-linéarité de la charge de travail (source Borland Software Corporation) :

● Note : 15 KLOC/année → 9 LOC/h
● Certaines tâches ne sont pas parallélisables :

▶ « Neuf femmes ne font pas un enfant en un mois »

Taille équipe Productivité par personne
(KLOC/année)

Productivité de l’équipe
(KLOC/année)

Gain

1 15.0 15.0

2 11.9 23.8 1.6

10 7.0 69.6 4.6

25 5.1 128.2 8.5

60

Cause d’échec n°2 :
Estimer la durée d’un projet

■ Rattraper le retard
● Contrairement à l’intuition, ajouter des personnes à une équipe d'ingénieurs

ne permet pas de rattraper le retard, au contraire :
▶ Les nouveaux ingénieurs doivent être formés par le anciens qui ne sont

donc plus à leur tâche et le retard s’accroît encore

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

