Chapitre 8 : Test logiciel

« Durant le débogage, les novices insérent du code correctif, alors
que les experts suppriment du code défectueux. » Richard Pattis

1. Objectif du chapitre

Ce chapitre porte sur une initiation aux tests logiciels et en particulier aux tests dynamiques.
A lissue de ce chapitre :

- Vous serez sensibilisé a I'importance des tests logiciels dynamiques.

- Vous serez capable de construire du code testable.

- Vous saurez programmer des tests unitaires et utiliser des « doublures » (ie, mock).

2. Généralités sur les tests

2.1. Pourquoi tester ?

- Seul moyen pour chasser les bugs. Le code zéro bug n’existe pas, sauf exceptions. Les bugs sont
inhérents a I'activité de codage (rappel de I'estimation : 1 3 10 bugs / KLOC). De plus, il n'existe pas de
preuve formelle pour des programmes quelconques, donc pas de programme automatique pouvant
calculer une preuve de programme. Mais il est possible de détecter certains bugs en testant les
programmes pour limiter la casse.

- Eviter les mauvaises surprises comme la découverte de bugs aprés la mise en production.

- Prémunir contre la régression de code. Les tests sont aussi des garde-fous pour détecter la régression
gu’un développeur peut introduire de facon involontaire lorsqu’il modifie le code du logiciel. Les tests de
non-régression assurent que les modifications du code lors de la refonte de code, de I'ajout de
fonctionnalités ou de la correction de bugs n’affectent pas le bon fonctionnement des fonctionnalités
préexistantes.

- Rassurer le développeur. Lorsque le code a atteint une certaine complexité, on commence a craindre
les modifications.

- Rassurer le client. Le produit final contient des preuves de test du produit.

2.2, Bug

Un bug est un défaut de conception ou de réalisation d’un logiciel qui provoque un dysfonctionnement.

Le mot a été popularisé en 1947 par Grace Hopper pionniére de I'informatique.

Il existe plusieurs catégories de bug :
- Bohrbug (inspiré de I'atome de Niels Bohr) : un bug qui a toutes les bonnes propriétés, en particulier, il
est répétable dans les mémes conditions. C'est le bug classique.
- Heisenbug (inspiré du principe d’incertitude de Heisenberg) : un bug dont le comportement est modifié
quand on essaye de l'isoler. Le cas typique est celui des exécutions sous dévermineur. Comme le

Chapitre 8 : Test logiciel ® 1/ 13

dévermineur réserve plus de mémoire a I'exécution que I'’exécution normale, une erreur d’adressage
mémoire qui apparait lors de I'exécution du logiciel (le fameux « Segmentation fault ») peut ne pas se
révéler sous dévermineur parce que, par malchance, la mauvaise adresse utilisée fait partie du bloc de
mémoire réserveé.

- Mandelbug (inspiré des fractales de Mandelbrot) : un bug dont les étapes pour le reproduire sont si
complexes qu'il semble se reproduire de facon aléatoire et chaotique. Par exemple, les situations de
compétition entre « thread » peuvent entrainer des Mandelbug ou le comportement du programme est
différent a chaque fois que celui-ci est exécuté.

- Schrodinbug (inspiré du chat de Schrodinger) : un bug qui ne se réveéle pas a I'exécution, mais qui est
découvert lorsque quelqu’un relit le code source ou utilise le logiciel d’'une facon inhabituelle.

2.3. Qu'est-ce qu’un test ?

Un test est un procédé de vérification et validation (V&V).
- Vérification : le logiciel fonctionne-t-il correctement ?
- Définition ISO 9000 : confirmation par I'examen et la fourniture de preuves objectives que des
exigences spécifiées ont été remplies.
- Validation : a-t-on construit le bon logiciel ?
- Définition ISO 9000 : confirmation par I'examen et la fourniture de preuves objectives que les
exigences, pour un usage ou une application voulue, ont été remplies.

2.4. Niveaux de test

On distingue globalement trois niveaux de test, ce que schématise la pyramide des tests.

Validation

A

Vérification

Figure 1 :La pyramide des tests.

De bas vers le haut, on distingue :
1. Tests unitaires : lls ont pour but de guider le développeur. Ce sont des tests en isolation des unités de
développement.
- Erreurs recherchées : les erreurs de codage et les erreurs fonctionnelles dans les unités.
2. Tests d'intégration : lls ont pour but de guider I'équipe de développement. Ce sont des tests qui
portent sur I'assemblage des unités.
- Erreurs recherchées : les erreurs d’interface entre unités.
3. Tests systéeme : lls ont pour but de critiquer le produit. Ils testent le systéme dans son ensemble et en

ENSICAEN ® 2 /13

particulier I'interaction homme machine (IHM).
- Erreurs recherchées : I'absence ou défaillance de fonctionnalités.
- En production, on distingue plusieurs niveaux de tests du systéme.
- Version alpha : tests auprés d'utilisateurs internes au projet.
- Version béta : tests auprés d'utilisateurs externes, mais avertis.
Les tests unitaires sont essentiellement de l'ordre de la vérification tandis que les tests systémes sont
essentiellement de I'ordre de la validation.

2.5. Tests dynamiques

Dans ce qui suit, nous nous focalisons sur les tests dynamiques. Un test dynamique est un bout de code qui
est exécuté avec l'intention de vérifier ou valider un bout de code fonctionnel.

Remarque : le test logiciel inclut aussi des tests manuels qui ne sont pas présentés ici (Voir les quadrants de
test Agile dans la littérature).

2.6. Types de tests dynamiques

1. Tests boite noire (black-box testing)

L’écriture des tests se fait sans connaitre la structure interne du Input— Output

code a tester.

- lls ne s’intéressent qu’aux entrées et sorties.
2. Tests boite blanche (white-box testing)
L'écriture des tests tient compte de la structure interne de I'unité
testée. En particulier, ils testent chaque chemin possible dans le

Input —| —Output

code, par exemple chaque branche d’un ‘if’.

2.7. Exemple fil rouge

On suppose une classe Human possédant les méthodes publiques suivantes :
- void setAge(int age)
- void setAgeLimit(int age)
- boolean isAdult() thows Exception, qui:
- léve une exception si age ¢ [0, ageLimit]
- retourne true siage € [18, ageLimit]
- retourne false siage € [0, 18]

2.7.1. Etape 1 : Objectif de test

On choisit une caractéristique ou une fonction a tester : c’est I'objectif de test.
- Par exemple : on décide de tester la méthode isAdult () dans le cas nominal ou le paramétre age est
dans [18, agelLimit].

2.7.2. Etape 2 : Jeu de test

Ensuite, on choisit les données pour le test : c’est le jeu de test.
Pour notre exemple, il faut choisir :
- une valeur pour le seuil d'age limite, par exemple ageLimit = 150.
- une valeur pour le parametre age qui soit dans l'intervalle : [18, ageLimit], par exemple : age = 35.

Chapitre 8 : Test logiciel ® 3/ 13

2.7.3. Etape 3 : Fixture

Avant d’exécuter le code du test, il faut amener I'objet dans I'état attendu : c’est la fixture.
- Dans notre exemple : création de I'objet Human et positionnement de son état.

Human h = new Human();
h.setAgeLimit(150);

2.7.4. Etape 4 : Oracle

On compare le résultat obtenu au résultat attendu : c’est 'oracle. Il est implémenté par une assertion, ie, une
expression booléenne censée étre vraie.
- Dans notre exemple :
- h.isAdult() retourne true

2.7.5. Etape 5 : Verdict

On en déduit si le test a réussi ou échoué : c’est le verdict.
- sionrécupére true: le test passe
- sionrécupeéere false: le test échoue
- s’ilyaunelevée d’exception non attendue, c’est une erreur, le test est inconclusif.

2.7.6. Etape 5 : Test exécutable : Cas de test

L'ensemble du test exécutable s’appelle un cas de test.

Définition IEEE 610 : Un cas de test est un ensemble de données de test, de pré-conditions d’exécution et de
résultats attendus développés pour un objectif, tel qu’exécuter un chemin particulier d’un programme (test
de type boite blanche) ou vérifier le respect d’une exigence spécifique (test de type boite noire).

Human h = new Human(); // fixture
h.setAgeLimit(150); // donnée de test
try {
h.setAge(35); // donnée de test
if (h.isAdult()) { // oracle
System.out.println("test passe"); // verdict
} else {
System.out.println("test echoue");
3
} catch (Exception e) {
System.out.println("erreur, test inconclusif");
3

2.8. Quand s’arréter de tester ?

Les tests sont incomplets par nature. On a testé isAdult() pour une valeur d’entrée seulement, mais il
faudrait les tester toutes. Ici, ce n’est pas possible puisque que age € N. Savoir quand s’arréter est une
question d’expérience. Un indice toutefois, la couverture des tests.

2.9. Couverture de code

La couverture de code est une mesure qui permet d’'identifier la proportion du code testé. Elle correspond au

ENSICAEN ® 4 /13

ratio de code source qui est exécuté quand une suite de test est lancée. Il existe des utilitaires de couverture
de code dans pratiquement tous les langages (par exemple Jacoco en Java).

2.10. Doit-on écrire des tests pour tout ?

Non, uniquement pour les choses qui peuvent raisonnablement étre source de bug. On n’écrit pas de test
pour des instructions qui peuvent étre vérifiées par I'OS, I'environnement d’exécution ou le compilateur.
Prenons I'’exemple de la classe AClass suivante :

public class AClass {
int _x;

public AClass(int x) { _x = x; }
int getX() { return _x; }
void setX(int x) { _x = x; }

}

On en teste pas getX () et setX(). Tester getX(setX(y))==y revient a tester _x=y, c’est-a-dire a tester le
compilateur.

2.11. A quelle fréquence dois-je exécuter mes tests ?

Exécutez le test unitaire aussi souvent que possible, idéalement a chaque changement dans le code.

2.12. Limite des tests

Mais, le test ne certifie pas le code : « Le test de programme peut étre utilisé pour prouver la présence de
bugs, mais jamais leur absence » - Edsger Dijkstra.
Parfois le code est faux, mais les tests aussi !

- Question : Doit-on faire des tests de tests ?

3. Test unitaire

Le test unitaire vise deux objectifs de vérification d'une unité en isolation.

1. Vérifier le bon fonctionnement d’une unité du logiciel.

2. Se prémunir contre la régression de code dans I'unité.
En programmation orientée objet, I'unité est la classe. A chaque classe du code source, on associe une autre
classe qui la teste.
Les tests unitaires testent une seule classe et sont indépendants les uns des autres (test en isolation). Cela
permet de s’assurer que si un test échoue, c’est la classe testée qui est fautive.
Par exemple, on teste les méthodes publiques et protégées de la classe TelecommandeTV en isolation. Si on
teste la classe TelecommandeTV en utilisant une télévision dans les tests, c’est du test d’intégration.

3.1. Qualités d’un test unitaire : FIRST

Un test doit impérativement posséder les qualités suivantes :
- [Flast (Rapide) : plusieurs centaines de tests par seconde.
- [llsolated (Isolé) : le test ne doit dépendre d’aucun autre test. Les tests peuvent étre exécutés dans
n'importe quel ordre.
- [R]epeatable (Répétable) : chaque exécution doit produire le méme résultat quel que soit le moment ou

Chapitre 8 : Test logiciel ® 5/ 13

I’environnement d’exécution. Cela interdit par exemple d’utiliser des valeurs aléatoires non reproductibles.
- [Slelf-validating (Auto-évaluable) : pas de recours a un utilisateur pour I'oracle.
- [Tlimely (Juste a temps) : programmé dés que I'on a la connaissance sur la fonctionnalité.

3.2. Testabilité d’'un code

On n’écrit pas du code testable comme du code classique.
Prenons I'exemple d’une alarme qui se déclenche a une heure butoir dans un agenda.
- On part du trés mauvais code suivant :

public final class Agenda {
public void check() {
if (System.getTimeInMillis() > 100) {
new Bell().ring();
3
¥

b

Voyez-vous pourquoi il est mauvais ? Ce code est mauvais parce qu'’il n’est pas testable automatiquement.

3.2.1. Controler une entrée indirecte

La méthode check () a deux données de test :

- ladate alaquelle I'alarme se déclenche,

- la date courante.
Mais, dans check() la date courante est nécessairement fournie par System. System étant incontrélable,
ce code est mauvais parce qu’il n’est pas testable. La date courante est une entrée indirecte de check()
qu'il faut pouvoir controéler.

3.2.2. Observer une sortie indirecte

L’objectif du test est :
- Vérifier que I'alarme se déclenche si la date courante dépasse a la date butoir.
Quel est 'oracle ?
- Ecouter si on entend ou pas quelque chose. Mais, ce n’est pas auto-évaluable.
- Observer sila méthode ring () de Bell a été appelée. Mais, I'objet Be 11 est créé dans check (), il n’est
pas observable.
Dans les deux cas, ce code est mauvais parce qu'’il n'est pas testable. L'interaction avec Bel1l est une sortie
indirecte de check (), qu’il faut pouvoir observer.

3.2.3. Code testable

Solution : Encapsuler et externaliser des dépendances pour rendre ce code testable.

public final class Agenda {
public Agenda(int 1imit, Clock clock, Bell bell) {
_clock = clock; _bell = bell; _limit = limit;
}
public Agenda() {
_clock = System; _bell = new Bell(); _limit = 100;

ENSICAEN ® 6/ 13

3
public void check() {

if (_clock.getTimeInMillis() > _limit) {
_bell.ring();
3
}
¥

Il y a deux constructeurs. Le constructeur par défaut est pour I'exécution normale et le constructeur avec

parameétres controlables est pour les tests.

4. Frameworks de test : JUnit

JUnit est un exemple de framework de test (peut étre le plus connu). Il permet de faciliter I'écriture de test
pour le langage Java. Ce qu'il offre :

- des assertions expressives pour automatiser le verdict,

- lavisualisation du verdict,

- la possibilité de lancer facilement les tests.

41. Organisation des codes

Les tests ne doivent pas étre dans la source de I'applicatif. Une organisation classique contient les dossiers
suivants :

- bin (ou build) pour les exécutables.

- src pour le code source applicatif.

- test pour le code source des tests.
L'organisation en paquets du code des tests suit celle du code des sources.
Par exemple, pour tester la classe fr.ensicaen.ecole.projet.MaClasse du dossier src, on trouve la
classe fr.ensicaen.ecole.projet.MaClasseTest dans le dossier test.
Avantages :

- Pas de pollution des sources par les tests.

- Permet de livrer I'applicatif avec ou sans les tests.

4.2, Les assertions de base de JUnit

Les assertions servent a décrire I'oracle d’un cas de test. Ce sont des variations autour de assert :
- assertTrue(boolean condition)
- assertFalse(boolean condition)
- assertEquals(Object expected, Object actual)
- assertEquals(double expected, double actual, double delta)
- assert[Not]Same(Object expected, Object actual)
- assert[Not]Null(Object actual)
- assertArrayEquals([] expecteds, [] actuals)
- fail()..

4.3. Méthode de test JUnit : @Test

L'écriture d’une méthode de test dans une classe de test représentant un cas de test, doit étre :
- annotée par @Test.
- publique, sans paramétre et de type de retour void.

Chapitre 8 : Test logiciel ® 7 / 13

Exemple reprenant le cas d’étude Human

@Test
public void test_is_an_adult_when_age_greater_than_18() {
Human h = new Human();
h.setAgeLimit(150);
h.setAge(35);
assertTrue(h.isAdult());

b

4.4. Tester la levée d'exception

Exemple : vérifier que I'appel de la méthode setAge() léve une quand le parameétre est hors limite. Si
I’exception est levée alors le verdict est positif.

@Test
public void test_throw_exception_if_age_is_greater_than_the_maximum()
Assertions.assertThrows(OutOfLevelException.class,
0O ->A{
Human h = new Human();
h.setAgeLimit(150);
h.setAge(151);

1)

4.5. Visualisation du verdict de JUnit

Le verdict est représenté graphiquement dans un IDE :
- Le test passe : barre verte.
- Le test échoue : barre rouge.
- Levée d’'une exception attendue : barre verte.
- Levée d’'une exception inattendue : barre rouge.

Run ** cytometror [test] f# L
PO iE Iz POES
@ Test Results 617ms B,
@ fr.greyc.cytometror.analysis.DashboardControllerTest 22ms
@ fr.greyc.cytometror.chart. AbstractChartController1Test 3ms
e @ fr.greyc.cytometror.chart. AbstractChartControllerTest 3ms a
p @ fr.greyc.cytometror.chart.Chart 1DControllerTest 5ms =
- @ fr.greyc.cytometror.chart.chart3d.ScatterChart3DTest 451ms 5]

Q)

@ fr.greyc.cytometror.domainmodel CellClass Test

@ fr.greyc.cytometror.domainmodel. CellFeatureTest

@ fr.greyc.cytometror.domainmodel. CellTest

@ fr.greyc.cytometror.domainmodel database.CellDatabaseTest

P &Run 2 &TODO % 3 VersionContrel [& Terminal

4.6. Fixture JUnit : @BeforeEach

Préambule des tests : une méthode annotée par @BeforeEach.
- Elle est appelée avant chaque méthode de test de la classe.
- Elle sert a factoriser la fixture des tests si elle est commune a tous les tests de la classe.

¥ should_ReturnClosestRationalFloat When_Uselrrational[test n°0 attendu 0.2 : résultat 0.3]
@ should_ReturnclosestRationalFloat when_Uselrrational[test n°1attendu 0.349: résultat 0.4]
¥ should ReturnClosestRationalFloat When_Uselrrational[test n°2 attendu 0.161: résultat 0.2]

Oms
ms
2ms
3ms
9ms

80ms

ENSICAEN ® 8 / 13

public final class test_level_management {

private Human _human;

@BeforeEach

public void setUp() throws Exception {
_human = new human();
_human.setAgeLimit(150);

}

@Test

public void test_age_greater_than_max(){
Assertions.assertThrows(OutOfLevelException.class,

0 ->{
h.setAge(151);

1

5. Frameworks de test : Mockito

Mockito est le plus connu des frameworks qui permettent I'écriture de « doublures » pour le langage Java.

5.1. La doublure pour les tests

Une doublure remplit deux réles :
1. Le substitut (fake) : une classe qui est une implémentation partielle et qui retourne toujours les
mémes réponses selon les paramétres fournis sans écrire de code pour cela (donc pas de bug inséré).
2. L'espion (spy) : une classe qui vérifie I'utilisation d’une classe doublée aprés son exécution.
Remarqgue : Les doublures peuvent aussi étre employées dans le code fonctionnel pour remplacer une classe
non encore développée. Dans ce cas, on parle de « bouchon » (mock en anglais).

5.2, Pourquoi des doublures ?

Les doublures offrent une solution pour développer des tests qui nécessitent :
- un composant dont le code n’est pas encore disponible.
- p.ex:persistance des données.
- un composant difficile a mettre en place.
- p.ex:une base de données.
- un comportement exceptionnel d’une classe.
- p.ex:déconnexion dans un réseau.
- un composant dont le code est lent (empéche le F de FAST).
- p.ex:construction d’'un maillage.
- une fonction qui a un comportement non-déterministe.
- p.ex:réseau.

5.3. Exemple d'utilisation du framework Mockito

On suppose la classe MaClasse a doubler :

1. D’abord, on importe Mockito dans le fichier test :
- import static org.mockito. Mockito.*;

2. On crée l'objet de la classe a tester en utilisant les doublures a la place des objets réels avec la

Chapitre 8 : Test logiciel ® 9 / 13

méthode mock () :
- MaClasse mc = mock(MaClasse.class);

3. On décrit le comportement attendu de la doublure :

- when(mc.maMethode()).thenReturn(56);

- when(mc.maMethode()).thenThrow(new Exception());
4. On vérifie que l'interaction avec les doublures est correcte :

- mc.verify() avec les bons tests.

5.4. Exemple d’utilisation pour le substitut pour une classe « ServiceAuthentification »

Le test suivant vérifie que la méthode verifie() de la classe MessagerieUtilisateur fonctionne
correctement quand on donne un mot de passe correct ou non. Le probléme, c’est que la méthode fait appel
a une autre classe ServiceAuthentification. Il est donc nécessaire d'utiliser une doublure pour garantir
la qualité « isolée » du test.

@Test

public void testLireMessagesAvecBonMotDePasse() {
ServiceAuthentification sa = mock(ServiceAuthentification.class);
when(sa.verifie("toto", "mdp")).thenReturn(true);
when(sa.verifie("toto", "mauvais_mdp")).thenReturn(false);
// 0On introduit la doublure dans la classe & tester.
MessagerieUtilisateur msg = new MessagerieUtilisateur(sa);
// Oracle
assertTrue(msg. lireMessages('"toto", "mdp"));
assertFalse(msg.lireMessages("toto", "mauvais_mdp"));

5.5. Exemple d’utilisation pour I'espionnage pour une classe « ServiceAuthentification »

Le test suivant vérifie que la méthode verifie() de laclasse MessagerieUtilisateur fait bien appel ala
méthode verifier () delaclasse ServiceAuthentification exactement une fois pour s’exécuter.

@Test

public void testLireMessages() {
ServiceAuthetification sa = mock(ServiceAuthentification.class);
Mockito.when(sa.verifier("toto", "mdp")).thenReturn(true);
Mockito.when(sa.verifier("toto", "mauvais_mdp")).thenReturn(false);
// étape 1 : on introduit la doublure
MessagerieUtilisateur msg = new MessagerieUtilisateur(sa);
// étape 2 : on lance le traitement
msg. lireMessages('"toto", "mdp");
msg. lireMessages("toto", "mauvais_mot_de_passe");
// étape 3 : on vérifie que la méthode verifier() a bien été
// appelée exactement une fois avec ces paramétres.
Mockito.verify(sa, times(1)).verifier("toto", "mdp");

ENSICAEN ® 10/ 13

6. Développement dirigé par les tests

6.1. Quand tester ?
Le colt de correction d’un bug est exponentiel avec I'avancement dans le cycle de vie du projet. Il faut donc
tester son logiciel le plus tot possible.

Charge de travail

A

P Temps

Développement Production Exploitation

Cot d’un bug dans le cycle de vie d'un logiciel.

6.2 TDD : Test Driven Development

Et si, les tests étaient programmeés avant la fonctionnalité ? On aboutit a une nouvelle facon de développer : le
développement dirigé par les tests (TDD). On écrit le code du test juste avant d’écrire le code de la
fonctionnalité a tester.

La regle d’or du TDD : « Ne jamais écrire une ligne de code fonctionnel sans qu’une ligne de code de test ne
I'exige. »

6.3. En pratique

- Le mantra du TDD : Toujours garder la barre verte pour garder le code propre.
- Red — Green = Refactor = Green
- Plus précisément :
1. Ecrire un test pour une fonctionnalité a développer.
Exécuter et constater que la barre est rouge.
Ecrire le code qui permet de faire passer le test (et rien que ce code).
Lancer le test et vérifier qu'il passe : barre verte.
Remanier le code : garder la barre verte.
Relancer tous les tests précédents : garder la barre verte.

ok wbd

6.4. Pourquoi écrire les tests avant le code ?

6.4.1. Avantages psychologiques

- Travailler plus sereinement.
- Siun bug apparait, il sera détecté trés tot par les tests.
- Grace au code testé :
- On est serein.
- On planifie mieux son travail.
- On évite les paniques de derniére minute.

Chapitre 8 : Test logiciel ® 11/ 13

- Rester focalisé sur la tache.
- Oblige a réfléchir a ce que doit faire le code avant de I'écrire.

6.4.2. Avantages techniques

- Garder un temps de développement constant. Tout au long du développement, il y aura le méme temps
consacré au test et au développement. On passe beaucoup moins de temps a déboguer.

- On a toujours quelgue chose a montrer au client, dont des tests. Il est impossible de livrer du code non
testé. Les tests de non-régression sont directement inclus.

- Quand on écrit le test, on ne se référe qu’a la spécification et pas a I'implémentation (test boite noire). Il
y a moins de biais et moins de dépendance au code.

- Le code de test sert aussi de documentation du code.

6.5. Pourquoi écrire un seul test a la fois ?

- Développement itératif.
- Optique du « petit pas ».
- Le test représente une partie du contrat total de la fonctionnalité testée.
- On ne passe au développement de la fonctionnalité suivante que lorsque la précédente a été validée.
- Pourquoi ne pas écrire tout le code fonctionnel d'un coup ?
- On n’écrit que le code qui a besoin d’étre validé par un test sinon on risque d'introduire du code
applicatif non testé ou d’ajouter des fonctionnalités inutiles.

6.6. Pourquoi commencer par la barre rouge ?

Il s'agit d’éviter les « happy tests » : des tests qui s'exécutent avec succés (barre verte) alors qu'ils ne
devraient pas (barre rouge).
Les causes possibles des happy test sont :

- Le test est construit par copier-coller d'un autre test sans modification.

- Le test est construit sans I'annotation @Test en JUnit.

- Le test ne teste pas réellement la méthode cible.

7. Correction de bug

La correction de bugs occupe une part importante de la charge d’'un développeur.

7.1 Mauvaise pratique

- Pratique classique (parfois enseignée)
1. Truffer le code d’appels d’affichage (printf) pour localiser la partie du code fautive.
2. Lancer le programme pour espérer isoler les lignes de bugs.
3. Corriger le bug en modifiant et relancant le programme autant de fois que nécessaire.
4. Une fois le bug corrigé, effacer les appels d’affichage.
- Une amélioration est d'utiliser le dévermineur (p. ex. gdb en C).
1. Exécuter le programme sous dévermineur.
2. Ajouter des points d’arrét pour examiner les valeurs des variables.
3. Corriger le bug une fois localisé.

ENSICAEN ® 12 /13

- Mais méme si la deuxieme méthode est plus efficace que la premiere, elles sont toutes les deux
inefficaces :

- Plus le code est développé, plus le temps de recherche de bug est important.

- Il ne prémunit pas contre une régression future (n’empéche pas le bug de se reproduire).

- L’introduction de lignes de code peut changer le comportement du programme (cf. Heisenbug).

7.2. Bonne pratique

1. Ecrire des tests pour détecter le bug tel qu'il est décrit.
2. Corriger le code applicatif afin de passer les tests.
Ainsi, les tests permettent aussi d’éviter que le bug ne se reproduise plus tard.

8. Queretenir de ce chapitre ?

- Les tests sont une obligation. Ils visent deux objectifs :
- chasser les bugs,
- poser des garde-fous contre la régression.
- Les tests doivent forcément accompagner le code d’'un logiciel. Un code sans test est inutilisable. En
empruntant la métaphore du génie civil, les tests sont les armatures du béton. On sait en génie civil, qu'il
est impossible de faire une tour de 200 m sans béton armé.
- Iy atrois types de test selon le niveau considéré.
- Unitaire: test en isolation (utilisation de doublures si nécessaire pour isoler). Ce sont les plus
nombreux.
- Intégration.
- Systéme.
- Les tests unitaires doivent étre écrits au méme moment que I'écriture de la fonctionnalité, que ce soit
juste avant ou juste aprés. Personnellement, j'utilise le TDD quand la fonctionnalité est bien définie et les
tests aprés le codage sinon.
- Le code des tests étant du code, il doit donc étre propre au méme titre que le code source applicatif.

Chapitre 8 : Test logiciel ® 13/ 13

	1. Objectif du chapitre
	2. Généralités sur les tests
	2.1. Pourquoi tester ?
	2.2. Bug
	2.3. Qu’est-ce qu’un test ?
	2.4. Niveaux de test
	2.5. Tests dynamiques
	2.6. Types de tests dynamiques
	2.7. Exemple fil rouge
	2.7.1. Étape 1 : Objectif de test
	2.7.2. Étape 2 : Jeu de test
	2.7.3. Étape 3 : Fixture
	2.7.4. Étape 4 : Oracle
	2.7.5. Étape 5 : Verdict
	2.7.6. Étape 5 : Test exécutable : Cas de test

	2.8. Quand s’arrêter de tester ?
	2.9. Couverture de code
	2.10. Doit-on écrire des tests pour tout ?
	2.11. À quelle fréquence dois-je exécuter mes tests ?
	2.12. Limite des tests

	3. Test unitaire
	3.1. Qualités d’un test unitaire : FIRST
	3.2. Testabilité d’un code
	3.2.1. Contrôler une entrée indirecte
	3.2.2. Observer une sortie indirecte
	3.2.3. Code testable

	4. Frameworks de test : JUnit
	4.1. Organisation des codes
	4.2. Les assertions de base de JUnit
	4.3. Méthode de test JUnit : @Test
	4.4. Tester la levée d’exception
	4.5. Visualisation du verdict de JUnit
	4.6. Fixture JUnit : @BeforeEach

	5. Frameworks de test : Mockito
	5.1. La doublure pour les tests
	5.2. Pourquoi des doublures ?
	5.3. Exemple d’utilisation du framework Mockito
	5.4. Exemple d’utilisation pour le substitut pour une classe « ServiceAuthentification »
	5.5. Exemple d’utilisation pour l’espionnage pour une classe « ServiceAuthentification »

	6. Développement dirigé par les tests
	6.1. Quand tester ?
	6.2. TDD : Test Driven Development
	6.3. En pratique
	6.4. Pourquoi écrire les tests avant le code ?
	6.4.1. Avantages psychologiques
	6.4.2. Avantages techniques

	6.5. Pourquoi écrire un seul test à la fois ?
	6.6. Pourquoi commencer par la barre rouge ?

	7. Correction de bug
	7.1. Mauvaise pratique
	7.2. Bonne pratique

	8. Que retenir de ce chapitre ?

