ENSICAEN - Spécialité Electronique et Physique Appliquée 1A

Systèmes Asservis

TD02

Les systèmes du second ordre

Exercice 1.

On excite un système linéaire du second ordre par un signal sinusoïdal $e(t) = e_0 \sin(\omega t)$ de fréquence $f = \frac{\omega}{2\pi}$ variable de 0 à 250Hz. Pour $e_0 = 50mV$, la sortie $s(t) = s_0 \sin(\omega t + \phi)$. L'amplitude s_0 est donnée en fonction de la fréquence sur la courbe ci dessous.

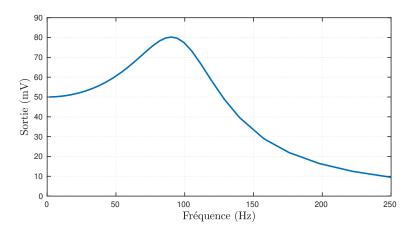


Figure 1 – Réponse fréquentielle

- 1) Écrire la fonction de transfert du système G(p) en fonction du gains statique K, du facteur d'amortissement ζ et de la pulsation propre ω_0 .
- 2) Calculer l'expression de la pulsation de résonance ω_R en fonction de la pulsation propre et du facteur d'amortissement.
- 3) Calculer la valeur de la résonance $|G(j\omega_R)|$ en fonction du facteur d'amortissement et du gain statique.
- 4) En utilisant la figure 1, donner la valeur des variables suivantes :
 - le gain statique,
 - la pulsation de résonance ω_R ,
 - la valeur de la résonance $|G(j\omega_R)|$,
 - les fréquences de coupure f_c à 0dB et f_{c6} à -6dB.
- 5) En utilisant les résultats précédents, donner la valeur des variables suivantes :
 - le facteur d'amortissement ζ ,
 - la pulsation propre ω_0 du système non amorti (pulsation naturelle).
- 6) Donner l'allure approximative des lieux de Bode, Nichols et Nyquist en y plaçant les pulsations ω_R , ω_0 et ω_c .
- 7) Donner l'expression des réponses impulsionnelle et indicielle du système. Quelle est la période des oscillations transitoires? On posera $\omega_n = \omega_0 \sqrt{1-\zeta^2}$.

- 8) À quels instants t_k la réponse indicielle a-t-elle un extremum?
- 9) Écrire la relation reliant la valeur du premier dépassement D_1 et le facteur d'amortissement.
- 10) À partir de la réponse indicielle donnée ci-dessous, donner le temps de réponse à 5%.

	0(0)						
0.0000	0.0000						
0.0008	0.1153						
0.0016	0.3905						
0.0024	0.7197						
0.0032	1.0156	1.4					
0.0040	1.2231						
0.0048	1.3223						
0.0056	1.3228	1.2	F/	······			
0.0064	1.2527		/	`			
0.0072	1.1476	_	/				
0.0080	1.0404	1					
0.0088	0.9552		/				
0.0096	0.9043	Sortie (V)	L				
0.0104	0.8888	0.0	/				
0.0112	0.9021	Eie	/				
0.0120	0.9329	E 0.6	L /				
0.0128	0.9695	$\tilde{\mathbf{S}}$	/				
0.0136	1.0022		/				
0.0144	1.0251	0.4	/				
0.0152	1.0359		/				
0.0160	1.0358		/				
0.0168	1.0279	0.2	/				
0.0176	1.0162		/				
0.0184	1.0043	0		i		i	i
0.0192	0.9949		0	0.005	0.01	0.015	0.02
0.0200	0.9893	· ·	•	0.000			0.02
0.0208	0.9876				1111	ne (sec)	
0.0216	0.9892						
0.0224	0.9926						
0.0232	0.9967						
0.0240	1.0003						
0.0248	1.0028						

11) Le système est utilisé pour étudier un signal sinusoïdal d'amplitude 20mV et de période 140ms. Une vibration parasite se superpose à ce signal. On l'assimile en première approximation à un signal sinusoïdal d'amplitude 2mV et de fréquence 180Hz. Donner le rapport signal sur bruit en entrée et en sortie du système.

0.025