
STM32CubeIDE

STM32CubeIDE

I. Présentation..2

II. Téléchargement et Installation..3

III. Création d’un projet..3

IV. Intégrer des sources existantes à un projet...4

IV.1. Importer les sources dans le workspace..4

IV.2. Intégrer les fichiers C/C++ au processus de compilation..5

IV.3. Intégrer les fichiers d’en-tête (headers) au chemins d’inclusion...6

V. HAL – Hardware Abstraction Layer...7

V.1. Couches logicielles..7

V.2. Utiliser la HAL...8

VI. Programmer et debugger avec STM32Cube..9

1

Except where otherwise noted, this work is licensed under
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

STM32CubeIDE

Presentation

I. PRESENTATION

STMicroelectonics offers a software suite to work on its own processors: STM32Cube1. It is
an entire ecosystem that contains several software tools, even though we will focus on two of
them:

• STM32CubeIDE, an Integrated Development Environment;

• STM32CubeMX, a graphical code generator tool.

The Integrated Development Environment (that will be called IDE from now on) is called
STM32CubeIDE. It uses the Eclipse framework, which is the largest cross-platform open-free IDE.
Eclipse works with perspectives, i.e. sets of windows that are configured for specific phases of the
development (e.g. edit, debug).

Built into the IDE there is STM32CubeMX, which is a graphical configuration interface for the
MCU and its internal peripherals. It gives configurations and control functions for the MCU
peripherals, in few clicks and few minutes. In a professional context this tool is used to accelerate
the prototyping phase and thus reduce the Time-to-market of software embedded solutions.

1 https://www.st.com/en/ecosystems/stm32cube.html

2

https://www.st.com/en/ecosystems/stm32cube.html

STM32CubeIDE

Download and Setup

II. DOWNLOAD AND SETUP

STM32CubeIDE can be downloaded right from the STMicroelectronics’s website. It is cross-
platform (Mac/Windows/Linux). This documents uses the 1.11.0 version.

https://www.st.com/en/development-tools/stm32cubeide.html

Once it has been installed (no difficult step), you can open the IDE a make a a discovery tour
with a 5-minute video, from the STM32CubeIDE:

Help → Tutorial Video → Discover your STM32 with SMT32CubeIDE

 → How to use STM32CubeIDE

III. PROJECT CREATION

1. In STM32CubeIDE (not STM32CubeMX) : File → New → STM32 Project.

2. In the tab “Board Selector”, find your board with the search bar (each board has a
sticker on it), select the board and click the “Next” button.

◦ It is also to select pre-exisiting example projects provided by STMicroelectronics.

3. Fill the project’s name2, choose its location3 and let the options by default (C /
Executable / STM32Cube), and click on Finish.

4. “Initalize all peripherals with their default Mode ?”

 “→ Yes” or “No”, depending on the lab’s requirements!

5. The graphical configuration window opens. It is an *.ioc file provided by STM32CubeMX.
In the “Pinout & Configuration” tab, configure the peripherals according to the
application requirements.

6. After the configuration: Project → Generate Code (or the icon) to generate the
files and functions corresponding to the peripheral configurations.

The project has been created and the configuration instructions have been written (startup,
clock configurations, interrupts, …). The peripherals that ave been configurated in the previous
step are now ready to use. To do so, see section “V HAL – Hardware Abstraction Layer” page 7.

Warning: After creating a project with STM32CubeMX (*.ioc configuration file), you must
code between two matching comment tags..
When modifying the MCU configuration, any code re-generation will erase any code line
that is outside these tags.

2 Project name with no accent, no special character, no space, …
3 Project location must be a short path, with no special character.

3

https://www.st.com/en/development-tools/stm32cubeide.html

STM32CubeIDE

Add existing sources to the project

IV. ADD EXISTING SOURCES TO THE PROJECT

IV.1. Import sources into the workspace
• To add existing sources (files or folders) to a project, you can simply copy-paste them into

an already existing project folder, using you OS’s file browser.

• You can also add files from within the IDE, from the Project Explorer (left tab of the IDE):

◦ Right-click on the project → Import... → General → File System → Next

◦ Follow the configuration as shown below:

The imported folder (or imported file) should now appear if the project’s tree-view, in the
Project Explorer tab.

4

STM32CubeIDE

Add existing sources to the project

Note
Importing a folder to a project has for sole effect to make its content (source
and header files) reachable from the Project Explorer tab, to make it easier to
read or edit those files.

This means that the imported files are not directly ready to be used by the
toolchain. Depending on the file type (C/C++ sources or header files), two
different operations must be performed. They are discussed in the next few
pages.

IV.2. Add C/C++ sources files to the compilation process
To be considered among sources files to be compiled, imported files must be in a “Source

Folder” recognizable with its icon. When a folder has been imported with the method
described before, it is a ordinary folder. Converting it as a Source Folder will add its files to the
sources to be compiled.

Convert a folder into a Source Folder:

Right-lick on the project → New → Source Folder → Fill in the Folder Name field or click
on Browse to find it → Finish.

In the example figure below, we can see that the Libs changed from an ordinary folder to a
Source folder.

5

STM32CubeIDE

Add existing sources to the project

IV.3. Add header files to include paths
Such as sources files, headers files must reachable for the toolchain. If these files are not in

an already referenced directory, then the new include paths must be provided to the toolchain
(for the GCC toolchain, this is the -I option).

0. Right-click on the project → Properties

1. C/C++ General → Paths and Symbols

2. Add, then fill in the headers directories

◦ Note : if the directory has been added using a symbolic link (and not by a physical copy-
paste), then you must fill in the original directories (not the links).

3. Number three on the figure below shows a manually added include directory, just below all
directories set by STM32CubeIDE.

4. Apply and close

Note: the include paths must also be set for the assembler stage of the toolchain if any assembly
file uses one of the imported headers.

Advice
Those import and includes steps are a common source of errors.
Do not hesitate to import and fill in include paths one at a time, compiling
after each one to analyze the toolchain error messsages.

6

STM32CubeIDE

HAL – Hardware Abstraction Layer

V. HAL – HARDWARE ABSTRACTION LAYER

V.1. Software layers
The “Embedded Systems” labs in first year discussed the low-level programming (at register

level) of a Microchip PIC18 MCU. The first aim was to develop a BSP (Board Support Package), and
the second one was to develop an application (Bluetooth speaker) using this BSP.

Reproducing this work on a STM32 microcontroller unit would be much longer due to the
ARM Cortex-M complexity, as compared to a PIC18. We will use a BSP equivalent for the STM32:
the HAL and the LL. The main reason is that all this hardware support is freely provided by
STM32CubeMX (see chapter « III Project creation »).

The HAL (Hardware Abstraction Layer) is an API (Application Programming Interface). To
this end it supplies a functions set to the developer, with an aim of being high-level and portable
(i.e. to all STM32 MCUs). Consequently any application written with HAL functions will be
adaptable to any STM32, from the L0 series to the F4 series, with no need of re-working the code
(as long as the hardware capabilities are the same). The HAL covers all of the STM32 peripherals.

The LL (Low-Layer) is also an API, which takes place at the register-level. It is thus lighter and
faster than the HAL, but it is available only for few peripherals and is not necessarily portable from
an STM32 to another. It mainly used for performance optimization.

Both APIs are offered by STMicroelectonics in order to comply with the MISRA-C standard,
which leads C programming in the automobile engineering. Note that using the HAL or the LL
allows to reduce the development time by a lot, but a skilled developer can modify or even use a
peripheral with no HALL/LL in order to optimize some peripherals’ operation.

t https://deepbluembedded.com/adding-ecual-drivers-to-your-stm32-project-configurations-options/

htps://deepbluembedded.com/stm32-hal-library-tutorial-examples/

On the figure above, we can see that the Middleware can partly be generated by
STM32CubeMX, just like the RTOS (Real-Time Operating System). However the application still
remains the developer's work as it should fit the project requirements.

7

https://deepbluembedded.com/stm32-hal-library-tutorial-examples/
https://deepbluembedded.com/adding-ecual-drivers-to-your-stm32-project-configurations-options/
https://deepbluembedded.com/stm32-hal-library-tutorial-examples/

STM32CubeIDE

HAL – Hardware Abstraction Layer

V.2. Use the HAL
Let us have a look at this extract of the “User Manual UM1749 – Description of STM32L0 HAL

and Low Layer drivers”4:

As long as at least one GPIO is initialized with STM32CubeMX, all of those functions will be
defined and provided in the project files. Similar functions are defined for the UART, the timer, …
and any other configured peripheral.

In the project tree view, all the HAL functions are declared and defined in the directory
<Project>/Drivers/STM32xxxx_HAL_Driver. Browsing those files, you can discover all the
available functions and how to use them. You will then be able to call them from your application
file.

4 https://www.st.com/en/embedded-software/stm32cubel0.html#documentation

8

https://www.st.com/en/embedded-software/stm32cubel0.html#documentation

STM32CubeIDE

Program and Debug with STM32Cube

VI. PROGRAM AND DEBUG WITH STM32CUBE

In short

Let’s keep it simple: the buttons below are the most commonly used in STM32CubeIDE.
Among them, the top two consist of the Build all button (compilation) and debug mode button.

1. New project (File New STM32 Project) [Alt+Shift+N]→ →

2. Configuration (Debug mode / Release mode)

3. Build current configuration of current project

4. Build all (Project Build All) [Ctrl+B]→

5. Debug current project (Run Debug) [F11]→

6. Run current project (Run Run) (upload firmware onto the target and debug).→

Debugger

The first time the debugger is launched, the « Edit Configuration » window opos up. Click on
the OK button. The IDE will change its perspective (the windows and menus change). It is possible
to come back to the edit perspective by stopping the debug mode.

1. Reset the debug session of the target MCU.

2. Make the debugger stop/skip the breakpoints

3. Stop and restart

4. Start / resume [F8]

5. Pause

6. Stop (stop the debug session, go back to the Edit mode)

7. Step into: go to the next instruction

8. Step over: go to the next line

9. Step return: resume until the current function returns.

9

	I. Presentation
	II. Download and Setup
	III. Project creation
	IV. Add existing sources to the project
	IV.1. Import sources into the workspace
	IV.2. Add C/C++ sources files to the compilation process
	IV.3. Add header files to include paths

	V. HAL – Hardware Abstraction Layer
	V.1. Software layers
	V.2. Use the HAL

	VI. Program and Debug with STM32Cube
	In short
	Debugger

