
SERIAL COMMUNICATION BUSES

Lab materials

GPSE / IPC-SATE-ECSE

dimitri.boudier@ensicaen.fr

mailto:dimitri.boudier@ensicaen.fr

SENSORS AND SYSTEMS CONNECTIVITY

Contact

Contact

Dimitri Boudier – In charge of this course

dimitri.boudier@ensicaen.fr

Resources

All the course materials (lecture slides, lab, hardware and software tools, …) are on the
Moodle page of the course:

https://foad.ensicaen.fr/course/view.php?id=213

2

Except where otherwise noted, this work is licensed under
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://foad.ensicaen.fr/course/view.php?id=213
mailto:dimitri.boudier@ensicaen.fr
https://creativecommons.org/licenses/by-nc-sa/4.0/

SENSORS AND SYSTEMS CONNECTIVITY

Contact

Contact..2

Resources..2

Part 1 Prelude...5
I. Set the context...6

I.1. Sensors and systems connectivity..6
I.2. How to work...7

II. Hardware and software needs...8
II.1. In short...8
II.2. Hardware and software presentation..9

III. Starting with the environment..12
III.1. Creating a project...12
III.2. Generated project insight..13
III.3. Control the GPIOs with the HAL functions...14
III.4. Use interrupts..16

Part 2 Asynchronous serial communication / UART...21
I. Presentation...22

II. Specifications..23

III. Implementation on a STM32...24
III.1. Project creation...24
III.2. Generated project insight..25
III.3. UART transmission..26
III.4. UART reception...29
III.5. Bridge UART (FRENCH ONLY)...32

IV. Overview...35

Part 3 SPI – Serial Peripheral Interface..37
I. Specifications...38

II. Frame constitution...39

III. Application: Light click..40
III.1. Daughterboard study...40
III.2. SPI peripheral configuration...41
III.3. light_click driver..42

IV. Application: Accel 2 click..47
IV.1. Sensor study..47
IV.2. SPI peripheral configuration...48
IV.3. accel_2_click driver...49

V. Overview..57

Part 4 I²C – Inter-Integrated Circuit..59
I. Specification...60

II. Application: Weather click..61
II.1. Sensor study..61
II.2. I²C peripheral configuration...62
II.3. weather_click driver..62
II.4. Overview..73

Part 5 Glossary..75

3

SENSORS AND SYSTEMS CONNECTIVITY

Contact

4

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

PART 1

PRELUDE

5

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

I. Set the context
This document and all of the surrounding materials have been built for the “Sensors and

Systems Connectivity” course, for the third-year students in GPSE-IPC.

However this document can also be used outside of this course, especially for those who
want to go deeper in their understanding of embedded systems. The required hardware and
software are listed in the next parts (II. Hardware and software needs page 8), with some of the
hardware equipment being available for lend or directly accessible in the A203 classroom.

I.1. Sensors and systems connectivity
This document is the first step of the “Sensors and systems connectivity” course. The aim of

the latter is to make an introduction to communicating sensors at first, followed by an introduction
to communicating systems.

Here the “communication sensor” term refers to any measuring element that is capable of
exchanging information with a not-so-distant processor. Modern systems use a digital interface,
even if some analogue interfaces still live on. Those digital exchange interfaces are called buses
(or communication buses) and their use is widespread (if not always used) in the embedded
systems ecosystem.

As you could have guessed, a communication bus is a communication system that shares
common links between various system’s components. In an embedded system, the communication
bus (or the buses) are usually implemented onto the PCB (Printed Circuit Board), or on few side
PCBs that are attached to the system’s main PCB. The system’s main processor (generally a MCU,
MicroController Unit) is called the master (or controller) and it drives the communication bus. It
communicates with other devices (sensors, actuators, other MCUs, …) that are called slaves (or
targets).

This course will deal with three communication buses: UART, SPI and I²C. They are by far the
most encountered in embedded systems. To work with these buses, we will make an MCU
communicate with various sensors, by developing the corresponding drivers. It will be necessary
to study the technical documentation of those integrated circuits, and then to analyze and decode
the data frames with an logic analyzer.

6

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

I.2. How to work
All of the files provided in this lab archive are meant to be enough to follow this course on

your own. You will find in this archive the following directories:

• datasheets manufacturers technical documentations

• lectures lecture materials for deeper insight about the communication buses

• tutorials how-to documents for hardware and software

• workspace the workspace (directory) into which the STM32 projects will be created

◦ drivers drafts of the sensors’ drivers (to be completed by yourself)

This document aims with studying serial communications by using three different sensors
(light, acceleration, temperature+humidity+pressure). If want to follow this lab on your spare time,
feel free to ask for the sensors to the teacher.

We can also provide you with other sensors (list of available sensors in the datasheets/
folder) if you want to explore even more and get a more solid experience in driver’s development.
Note that developing a driver from scratch is very educational, since you have to be able to extract
useful information out of the datasheet, that can be big and sometimes complex.

I.2.a. Assessment
For those who follow the « Sensors and Systems Connectivity » teaching, one mark will be

given to the report that you will hand to the teacher at the end of the course

For that you have to answer the  questions, provide the screenshots (serial t erminal,
logic analyzer), and complete the  source files.

You can answer on this digital document (the PDF and editable versions are both in the
archive), or on a paper document (the one printed for you, or another one made by yourself). The
only restraint is that the questions must be fully written to ensure no question has been
forgotten). Screenshots should ideally be directly integrated into the document (paper or digital).

Source files will be requested on the Moodle page (do not forget to fill the @author fields on
the beginning of each file). The source files will be requested as we go along.

I.2.b. Notation
  Question waiting for a written answer (by analyzing all given resources)

  Answer by writing code, programming, debugging, …

  Answer with a screenshot (serial terminal, oscilloscope, logic analyzer, …)

7

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

II. Hardware and software needs

II.1. In short
Here is a short list of our hardware and software needs, all of those being used in this

document. A detailed presentation is provided on the next pages.

The hardware equipment used in this document is:

• a NUCLEO-L073RZ development board

◦ any other NUCLEO board (-L746RG, -WL55JC1, …) is compatible.

• an Arduino UNO click shield;

• three MIKROE Click Board:

◦ In this document: USB UART click ; Light click ; Accel 2 click ; Weather click

◦ In the classrooms: Air Quality click, Pollution click, Barometer click, …

• an IKALogic logic analyzer:

◦ Any other logic analyzer or oscilloscope is compatible, as long as they support protocol
decoding (UART, SPI and I²C)

◦ Note: this is the only optional equipment of this list (but still very useful)

The software are the following:

• STM32CubeIDE (validated with version 1.11.0) :

◦ IDE used for programming and debugging the STM32 NUCLEO boards

◦ https://www.st.com/en/development-tools/stm32cubeide.html

◦ any other compatible IDE (Keil, VS Code with the STM32 extension, …) is accepted

◦ Note: there is a tutorial in this archive for STM32CubeIDE (but not for the others IDEs)

• ScanaStudio

◦ Software dedicated to the IKALogic logic analyzer

◦ https://ikalogic.com/scanastudio/

◦ If you use another logic analyzer or oscilloscope, you must use the associated software

◦ Note: there is a tutorial in this archive for IKALogic and ScanaStudio

◦ Note: it this the only optional software of this list

• A serial terminal

◦ Any should do the trick

◦ Tera Term (Windows), PuTTY (Windows/Linux), GTKTerm (Linux), minicom (Linux), …

◦ Note: there is a tutorial in this archive for the four listed terminals

Remember that there are how-to documents in this tutorials/ folder of this lab archive.
They present the hardware and/or software and show how to use them. Keep visiting this folder
anytime you encounter a new equipment.

8

https://ikalogic.com/scanastudio/
https://www.st.com/en/development-tools/stm32cubeide.html

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

II.2. Hardware and software presentation

II.2.a. STMicroelectronics NUCLEO boards
The French-Italian firm STMicroelectonics is one of the world leaders on the semi-conductor

markets and more precisely on the market of 32-bit ARM-based MCUs. In order to help developers
to take their MCUs in hand, ST offers various evaluation boards. Their most well-known evaluation
board is the NUCLEO, being cheap while have a high diversity of MCUs (thus matching with a wide
range of uses and application, from low-power to high-performance MCUs).

As an example, the NUCLEO-L073RZ1 board used
in this document has on its PCB the target MCU
(STM32L073RZ), a programming/debugging probe, a
push-button and a LED.

The NUCLEO boards also come with two
connectors that give an easy access to the MCU pins. This
facilitates the prototyping process. You can see on this
board an Arduino connector and a Morpho connector,
the latter being specific to STM (2 x 38 pins).

Last but not least, the NUCLEO boards are also
equipped with a serial communication interface through
the USB port. This functionality is called STLink VCP
(Virtual Comm Port). This offers a user-friendly debugging
interface, with no additional equipment needed.

For more information please see the dedicated
tutorial document: tutorials/tutoriel_nucleol073rz.

The processor embedded onto the NUCLEO-L073RZ board is a STMicroelectonics
STM32L073RZ2 MicroController Unit. It is a 32-bit MCU built around an ARM Cortex-M0+ CPU. Its
main characteristic is being an ultra-low power MCU (the ‘l’ in “STM32L” stand for “Low-power”).
Among its numerous peripherals we can name the USART, SPI and I²C: these are the ones that you
will work with during this lab.

As said above, all NUCLEO boards come with an
Arduino connector. We will plug a MIKROE Arduino
UNO click shield onto the NUCLEO board. This will give
us two Click board slots into which we will place the Click
boards used in this lab. The Click boards contain the
sensors, as explained on the next page.

1 https://www.st.com/en/evaluation-tools/nucleo-l073rz.html
2 https://www.st.com/en/microcontrollers-microprocessors/stm32l073rz.html

9

https://www.st.com/en/microcontrollers-microprocessors/stm32l073rz.html
https://www.st.com/en/evaluation-tools/nucleo-l073rz.html

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

II.2.b. MIKROE Click board™
MikroElectronika3 (shorten in MIKROE) is a Serbian company specialized in hardware and

software conception.

The firm has developed the open mikroBUS™ standard, which defines a connector format in
which all of the pins are fixed. The choice of the signals that are integrated into this format (GND,
+3.3V, +5V, UART, SPI, I²C, analogue, PWM) makes the mikroBUS™ compatible with a wide set of
different uses.

The mikroBUS™ standard helped MIKROE to spread is lead product: the Click board™ series.
Each of those boards possesses a unique device (sensor, actuator, power, communication, …), but
they all share the same mikroBUS™ format. As of septembre 2023, more than 1,500 Click boards
are active. Many evaluation boards are now equipped with mikroBUS™ slots in order to host Click
boards (just like the Microchip Curiosity HPC used in first year of ENSICAEN).

For each Click board, MIKROE gives access to the board schematic, to the ICs’ technical
documentation and to the drivers they have developed. Everything is available on the
manufacturer website. For the sensors used in this lab, all the necessary files have bee gathered in
the connectivity/datasheets/ folder.

3 https://www.mikroe.com/about

10

https://www.mikroe.com/about

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

II.2.c. IDE – Integrated Development Environment
For our firmware developments on STM32 MCUs we will use the software suite given by

STMicroelectonics: STM32Cube4. It is a entire ecosystem that contains many software tools,
though we will focus on only two of them:

• STM32CubeIDE, the IDE;

• STM32CubeMX, an initialization code generator.

The Integrated Development Environment (that will be called IDE from now on) is called
STM32CubeIDE. It uses the Eclipse framework, which is the largest cross-platform open-free IDE.
Eclipse works with perspectives, i.e. sets of windows that are configured for specific phases of the
development (e.g. edit, debug).

We could have decided to program the MCU at a register-level, just like the Embedded
Systems lab in first year. But we would have needed much more time for this course because ARM
Cortex-M CPUs are more complex as compared to PIC18 MCUs.

As we wanted to focus on the sensors’ drivers rather than on the CPU/MCU, we will use
STM32CubeMX. It is a tool with a graphical interface that lets us choose the configuration of the
MCU and its internal peripherals. A fully functional firmware can be built in few minutes, even with
barely no knowledge of the device. In a professional context this tool is used to accelerate the
prototyping phase and thus reduce the Time-to-market of software embedded solutions. We must
confess that this kind of tool also exists for Microchip, even if we hid it to you (for teaching
purpose obviously). This one is called MCC (MPLAB Code Configurator).

STM32Cube is cross-platform, meaning that you can work either on Windows or Linux. For
downloading, setup and use instructions, please see the tutorial_stm32cubeide.pdf file.

4 https://www.st.com/en/ecosystems/stm32cube.html

11

https://www.st.com/en/ecosystems/stm32cube.html

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

III. Starting with the environment
Before going deep into the study of serial communication buses, we will take some time to

discover our work environment by focusing only on the NUCLEO board and the STM32CubeIDE
software.

III.1. Creating a project
 Read the tutorial_stm32cubeide.pdf file to create a project with the STM32CubeIDE

software. Be careful to consider the information below while following the tutorial’s steps.

 You will need the following information while creating the project:

• Board selector: use the NUCLEO board reference (bottom side of the board);

• Project Name: YOURNAME_gpio ;

• Project Location: select the connectivity/workspace/gpio/ directory, in your lab archive;

• Initialize all peripherals with their default Mode ?: Yes.

After the creation phase, a window dedicated to the configuration phase will open. Let us
have a look at the peripherals that are configured by default.

 In System Core → GPIO, note here the pin number of the configured GPIOs, and their
function as well:

 The configuration has been prepared by STM32CubeMX (with this window), but the code
generation is still to be done: click on Project Generate Code→ (or the icon).

Et voilà ! Two GPIOs are ready to use: the one attached to the LED and the one attached to
the push button. Their initialization code has been written, alongside with manipulation functions
and there are yours to use from now on. We will see them on the next page.

12

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

III.2. Generated project insight
The tab at the left-side of the IDE is the Project

Explorer.

At first the tree view of the project seems to be
complex, but it is actually quite easy to understand:

• Core/Src/: directory that contains the source files
(C and asm) for the application (thus matching
specific requirements);

• Core/Inc/: same, but for header files (.h)

• Drivers/STM32L0xx_HAL_Driver/Src/, Inc/: folders
that respectively contain the source and header
files for the HAL (Hardware Abstraction Layer). In
other words, these are the driver functions (or BSP)
given by CubeMX for the peripherals manipulation.
Those files are specific to the target STM32 MCU.

• an .ioc file that opens the configuration window
(CubeMX), as seen before.

A deeper insight is provided in the tutorial_stm32cubeide.pdf file.

 Open the Core\Src\main.c file. You should notice that is is already partially completed.
This is the consequence of using CubeMX (an initialization code generator) after the project
creation.

 Browse the main() function. You should see that some initialization functions are called ,
followed by an empty while(1) loop.

 Hold the Ctrl key and click on the MX_GPIO_Init() function. This ctrl+click shortcut
brings you to the function definition, which in this case is in the main.c file. It has been created
whilst you were in the project configuration phase. By the way you can see that the function ’s
instructions match the parameters that you have seen in the graphical configuration interface.
Right after these instructions, the HAL_GPIO_Init() HAL function is called.

 Ctrl+Click on the HAL_GPIO_Init() function call. This time another file opens:
stm32l0xx_hal_gpio.c. This file belongs the the HAL (Hardware Abstraction Layer) and contains all
the configuration and manipulation functions for the GPIO peripheral. Among these functions, you
will use:

• HAL_GPIO_Init(): function that configures the pin as a GPIO;

• HAL_GPIO_ReadPin(): function that reads the logic level of the specified pin;

• HAL_GPIO_WritePin(): function that sets the logic level of the specified pin.

To keep it short the HAL (Hardware Abstraction Layer) is a set of functions written for setting
up and controlling the MCU peripherals. They are provided by STMicroelectronics. For a detailed
presentation, please read the tutorial_stm32cubeide.pdf document, from the tutorials/ folder
in the lab archive.

13

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

III.3. Control the GPIOs with the HAL functions
The NUCLEO-64 boards (family to which the NUCLEO-LR073 belongs) are equipped with a

push button and a LED. You have already check (in part III.1 Creating a project) that those GPIOs
have been configured and are now ready to use with the functions previously listed.

/!\ WARNING /!\

The good news when using STM32CubeMX is that you do not have to write the content of
the main() function. Indeed the initialization code generator takes care of it, sparing your
time.

Obviously the written code does not fit with every single application, meaning you are free
to add your own code. But you must respect the places that CubeMX gives. These places
are marked out by two matching comment tags (e.g. /* USER CODE BEGIN WHILE */ and /*
USER CODE END WHILE */).

As a consequence, the code that you will develop shall be written between two
comment tags BEGIN and END.

Any code line outside of the marks will be deleted when regenerating the code with
CubeMX (for instance when adding support of another peripheral, which we will do later
on). On the other hand, any code line between two matching tags will remain. It is a very
simple rule yet a strict one.

 In the while(1){...} loop (main() function), write the following code

Beware: write this code between two matching comment tags.

if(HAL_GPIO_ReadPin(B1_GPIO_Port, B1_Pin) == GPIO_PIN_RESET)
{
 HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
}
else
{
 HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
}

 Compile (Project Build All) and launch the program onto the target MCU (Run Run).→ →

You will quickly guess how to interact with the NUCLEO board to confirm that the program
runs perfectly.

14

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

 Ctrl+click on LD2_GPIO_Port. You should observe that several constants are defined at
the very same place.

 Which file contains theses constants definitions? Who/what defined them here?

 Which function let us change the GPIO logic state? Take a look among the numerous
functions declared in the stm32l0xx_hal_gpio.h file.

 Which function let us set a software delay (thus being a blocking function)? Look into the
stm32l0xx_hal.h file.

 Thanks to both functions, make the LED blink by changing its logic state every two
seconds.

 Confirm visually.

 Confirm the blink period with an oscilloscope or a logic analyzer.

Example of what you should observe with a logic analyzer.

In just few minutes you took control of a rather development board that contains a rather
complex STM32 MCU. You configured two GPIOs and controlled them as input and output.
The use of the IDE (more precisely of STM32CubeMX) was very helpful in term of work
time.

15

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

III.4. Use interrupts
As any self-respecting micro-controller unit, the STM32 MCUs can use an interrupt

mechanism. As a reminder the goal of the interrupts is to let the peripheral “catch” an event, in
which case it rises an IF (Interrupt Flag) bit. If one event is allowed to interrupt the running
program, the Interrupt Flag becomes an IRQ (Interrupt Request), which is an electric signal linked
to the CPU. When one IRQ gets to the CPU, the latter pauses the running program and then goes
and executes another code portion stored in a memory zone called Interrupt Vector. This vector
usually contains few instructions, e.g. a call to the function that is actually in charge of dealing with
the incoming event: the ISR (Interrupt Service Routine).

For ARM cores (such as the one in the STM32 MCUs), the interrupt controller is called NVIC
(Nested Vector Interrupt Controller). The GPIOs that are configured as inputs can trigger an
interrupt following a change in their logic state. This can be set with the EXTI (External Interrupts)
Controller, a sub-stage of the NVIC. In this section we will configure the push button input so that
it triggers an interrupts whenever the button is pressed down.

Open the VOTRENOM_gpio.ioc file. It will open the MCU graphical configuration interface.

 On the « Pinout view », click on the push button pin.

 In which mode is it configured? Note that this is not GPIO_Input.

 On the left tab: System Core → GPIO, click on this pin in the table.

 In which « GPIO mode » is it configured? What does it mean?

 In System Core NVIC→ , check the line EXTI line 4 to 15 interrupts and set the value of
the Preemption Priority to ‘1’. In ARM CPUs, ‘0’ is the highest priority level. We want our push
button to be of a lower priority than the HAL_Delay() (which has a level priority of ‘0’).

16

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

 Clic k on Project Generate Code→ (or) to generate new code.

The STM32CubeMX configurator has updated the existing code, by adding the changes that
you just have requested.

/!\ Reminder /!\

In order to modify the existing code, STM32CubeMX finds its way thanks to the comment
tags that we discussed about (e.g. /* USER CODE BEGIN Init */ and /* USER CODE BEGIN
Init */).

Recall that you must write your own code between two matching tags, otherwise anything
will be deleted anytime you ask for the code to be generated again.

 In the MX_GPIO_Init() function (main.c), which instructions have been added? What are
they used for?

In the stm32l0xx_hal_gpio.c file the HAL_GPIO_EXTI_IRQHandler() function is the Interrupt
Service Routine (ISR), called after an Interrupt Request (IRQ), which is triggered by a logic state
change on a GPIO input. The ISR then calls another function: HAL_GPIO_EXTI_Callback(). This
function is the one given to the developer (you) to deal with the event.

 This callback function is declared few lines further in the same file. What does the __weak
keyword means in its declaration: __weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)?

17

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

 In the  main.c file, copy and paste theses lines (note that the comment tags are given).

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
 if(GPIO_Pin == B1_Pin) {
 for(int i = 0 ; i < 10 ; i++) {
 HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
 HAL_Delay(50);
 }
 }
}
/* USER CODE END 0 */

You should notice that the function prototype is exactly the same as the one of the previous
question: it is a function redefinition (made possible thanks to the __weak qualifier). It is up to the
developer to fill the definition of this function.

 What does this function do?

 Upload the program in the target MCU and verify its behavior.

You should observe that the previous application (blinking every two seconds) is still running.
But now it is interrupted by another code portion whenever the push button is pressed down.

 Confirm with an oscilloscope or a logic analyzer, triggered on the falling edge of the push
button pin.

The end

The interrupt mechanism, which is a rather complex mechanism in MCUs, has been set and
seen in few minutes. On one hand the automatic configuration did not really help to have a
better understanding of the mechanism, but on the other hand the abstraction layer given
by CubeMX kept us from spending a lot of time on the application development.

18

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

19

SENSORS AND SYSTEMS CONNECTIVITY

Prelude

20

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

PART 2

ASYNCHRONOUS SERIAL

COMMUNICATION

/ UART

21

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

I. Presentation
The UART is an Universal Asynchronous Receiver-Transmitter. It names a device or a

peripheral but it is not a communication protocol, whatever the misuse of language frequently
seen. The communication between two UARTs is an asynchronous serial communication.

This communication has disappeared from the computer world (the USB arrived in 1996 and
replaced it), but it still remains in the embedded world. Indeed this peripheral is easy to build and
to use, and allows anyone to quickly set up a communication interface.

The minimalist UART device is made with two lines: a transmission line called Tx and a
reception line called Rx. To connect two UARTs together, both lines should be crossed (Tx1 Rx→ 2

and Rx1 Tx← 2). The transmission mode is then a full-duplex.

Its topology differs from other protocols that are usually met in embedded systems: this is a
point-to-point communication, and not a proper communication bus. In practice this serial
communication is rather used to connect a computer to an electronic system. In this way the
computer uses a serial terminal that communicates with the embedded system, giving access to a
debugging and/or configuration interface. This proves the simplicity advantage, because a simple
software terminal (Tera Term, PuTTY, GTKTerm, …) can exchange data with the target system,
simply by sending ASCII characters.

22

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

II. Specifications
From a hardware view, a UART peripheral contains two lines:

• 1 Tx line for the transmission (connected to its counterpart Rx line);

• 1 Rx line for the reception (connected to its counterpart Tx line).

The lines idle state is imposed by the serial communication protocol. While no data is
exchanged, the lines keep a high logic state. Note that UARTs in embedded systems use TTL
voltage levels, i.e. 0 V for a low logic state and +3.3 V/5 V for a high logic state.

The communication protocol also rules the frame structure, even if it is slightly adaptable. A
data frame is made of several fields:

• 1 start bit (low logic state, to “break” the idle state);

• 5 to 9 data bits (payload), LSb5 first;

• 1 parity bit, optional, used for error detection;

• 1 or 2 stop bits (high logic state).

The most widespread configuration is the 115200-8N1 :

• 115200 is the baud rate (usual values range from 9600 to 115200 baud) ;

• 8 data bits (from 5 to 9) ;

• No parity bit (N = No parity bit – O = Odd parity bit – E = Even parity bit) ;

• 1 stop bit (1 or 2).

Other asynchronous serial link standards exist, such as the RS-232 and RS-485 standards. It is
not useful to describe them here because there are more used in an industrial context but are
rarely met in embedded systems. We will just say that they are quite similar to what have be
written above, apart from the lowest OSI model layer (Physical layer) that sets the requirements of
voltage levels, bit coding, connector mechanical specification, differential pairs, wire lengths, ... …

5 In this document we will use the LSb/MSb notation for Least/Most Significant bit, and the LSB/MSB
notation for Least/Most Significant Byte.

23

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III. Implementation on a STM32

III.1. Project creation
 Following the tutorial_stm32cubeide.pdf file, create an STM32CubeIDE project. Also

consider the information below.

 You will need these information while creating the project:

• Board selector: use the NUCLEO board reference (bottom side of the board);

• Project Name: YOURNAME_uart;

• Project Location: select the directory connectivity/workspace/uart/;

• Initialize all peripherals with their default Mode ?: Yes.

 You will need the information below while the MCU configuration:

• Connectivity

◦ USART2→

▪ Parameter Settings→

• 115 200 baud ; 8 data bits ; no parity bit ; 1 stop bit

▪ NVIC Settings→

• USART2 Interrupt : Enable

▪ → GPIO Settings

• Note here the MCU pins used by the USART2 peripheral

◦  USART2_TX = ______

◦  USART2_RX = ______

One the configuration is ready: Project Generate Code→ for generating the code
corresponding to the peripherals configuration (or click on the icon).

Here we go again. Configuration and control functions for the USART2 peripheral are ready
in few minutes thanks to the STM32CubeMX initialization code generator.

To give you a rough estimate, the STM32L0x3 reference manual contains 1,040 pages and the
« USART/UART » chapter contains 67. This USART peripheral uses a dozen registers. Let us
compare this to the PIC18F27K40, which datasheets counts 818 pages. Its EUSART
peripheral is detailed on 35 pages and uses 6 registers.

For the PIC18 EUSART peripheral, which is about half as much complex as the STM32 USART,
you spent about 10 hours developing a small driver for this sole peripheral! Also remember
that the Cortex-M0+ is one of the simplest ARM CPUs!

24

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.2. Generated project insight
The Project Explorer is on the left side of the IDE window.

 Open the main.c file and browse the main() function. There are some initialization
function calls, and an empty while(1) loop.

 Hold the Ctrl key and click on the MX_USART2_UART_Init() function. This brings you to
the function definition, in the main.c file. Similarly to the GPIOs initialization function, this one has
been created when you prepared the USART2 configuration, just after the project creation. You
can compare the graphical interface parameters and the instructions of this initialization function:
all parameters give birth to C instructions. Right after those parameters, you should see that a HAL
function is called: HAL_UART_Init().

 Ctrl+Clic one the HAL_UART_Init() function. A new file opens: stm32l0xx_hal_uart.c. It
is a HAL (Hardware Abstraction Layer) file that contains all the configuration and control functions
of the USART peripheral. Among those function, you will use:

• HAL_UART_Transmit(): sends data to the Tx line, blocking function;

• HAL_UART_Transmit_IT(): same, but non-blocking (uses the interrupt mechanism)

◦ Once the transmission is complete, the HAL_UART_TxCpltCallback() function is
automatically called by the Interrupt Service Routine (ISR). To perform any operation,
this callback must be redefined.

• HAL_UART_Receive(): reads data from the Rx line, blocking function;

• HAL_UART_Receive_IT(): same, but non-blocking (uses the interrupt mechanism)

◦ Once a data is received, the HAL_UART_RxCpltCallback() function is automatically called
by the ISR. TO perform any operation on data reception, this callback must be
redefined.

25

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.3. UART transmission
With all these functions in hand you will be able to send a message using the UART

peripheral in a short amount of time.

/!\ REMINDER /!\

You must write your code between two matching comment tags!
(e.g. /* USER CODE BEGIN WHILE */ and /* USER CODE END WHILE */)

 In the while(1) loop (main() function), you will send the string "Hi\r\n" through the
USART2 peripheral.

 What arguments should you give to the HAL_UART_Transmit() function?

 Send this string and add a 2-second delay with the HAL_Delay() function, which is defined
in the stm32l0xx_hal.c file.

 Compile and upload into the target. If there is no error, carry on to the next
question to confirm the good operation. If there is any error, please solve it or ask for help.

26

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.3.a. STLink Virtual COM Port
The NUCLEO board contains the target MCU (STM32WL55JC) but it also has another MCU

called the STLink. The latter is an intermediary between the computer and the target MCU, and it
mainly operates as a programming and debugging probe.

The STLink MCU also has another functionality: the STLink Virtual COM PORT (VCP). On one
side it is able to emulate a serial communication with the computer, through the USB cable. On the
other side the USART2 peripheral of the target MCU is physically connected to the STLink. One
could say that the STLink acts like a bridge, between the target MCU (UART) and the host
computer (USB). This requires no additional device (as compared to the UART/USB FTDI used in 1st

year) and it appears to be a handy tool, even more for those who will work off session.

However due to its physical connection with the STLink VCP, the USART2 pins are available
on the NUCLEO connectors (neither the Morpho (PA2/PA3) nor the Arduino (D0/D1) connectors).
We will solve this inconvenience later.

III.3.b. Validation with a serial terminal
 Open a serial terminal, any of your kind (Teraterm, PuTTY, GTKTerm, …). Set it up so it can

exchange data with the STLink VCP (baud rate, parity, stop bits, …).

 You should see some text on the terminal. Check that this is the string you send with the
STM32, and confirm by taking a screenshot of the serial terminal.

Do not go further until this step has not been proved operational!

The serial terminal is a very practical way of debugging and testing an application. In the
embedded firmware development, it is the equivalent of a printf("here"); in C.

27

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.3.c. Analysis of the transmitted frame with a logic analyzer
Now it is time to analyze the frame using a powerful tool: the logic analyzer. To do so you will

have to probe the Rx and Tx electric signals. But we have seen that these pins are not linked to the
NUCLEO connectors, but to the STLink. If we want to analyze those signals, we will have to find a
way to their physical signals.

 In part III.1 Project creation page 24, you wrote the name of the Rx and Tx pins of the
USART2 peripheral. Write them again here:

 Open the NUCLEO board schematic, given in the datasheets folder of the lab archive. On
this schematic, find the target MCU, the Rx and Tx pins and follow the wires until you encounter a
connector that is easily accessible with probes. To help you, list here every label you see, from the
MCU pins to the STLink pins.

 Once you have identified the connector from which you will measure the Rx and Tx
signals, make a capture with the logic analyzer. A tutorial for using the IKALogic analyzer and the
ScanaStudio software exists in the tutorials directory.

 Here is a frame captured with the logic analyzer. It strictly is the signal that you are
supposed to capture. Write the logic level of each bit, bit by bit, and find the original message.

 This work is quite tedious, even more when there is a large amount of captured framed
waiting to be decoded. Instead of doing this again, use the frame decoding tool in ScanaStudio.
Also display the HexView (go back to the tutorial if needed).

This time again, do not pass this point until you have decoded the frame using the logic
analyzer tools.

28

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.4. UART reception

III.4.a. Blocking reception
The simplest way of receiving data on the USART2 is to use the HAL_UART_Receive()

function. Read the stm32l0xx_hal_uart.c file in which this function is defined.

 What arguments should you pass to the HAL_UART_Receive() function?

 In the main() function, after the UART initialization and before the while(1) loop, send
the string "\r\nApplication starting\r\n". This will indicate on the serial terminal that the
firmware has started running.

 In the while(1) loop now, wait for a character to be received and then send it back
through the UART. This is called and echo application, which will replicate on the serial terminal the
character that it just sent.

 Confirm the operation with a serial terminal.

 Confirm the operation with a logic analyzer capture. You should observe something
similar to the figure below.

29

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.4.b. Non-blocking reception
Although the HAL_UART_Receive() function is easy to use, its main drawback is that it use

polling. In other words it is a blocking function: it monopolize the processor’s CPU just to wait for a
data to be received, preventing any other instruction to be executed.

To keep executing the firmware while waiting for data to arrive, we will use the interrupt
mechanism thanks to the HAL_UART_Receive_IT() function.

Interrupts have been explained in Part 1III.4 page 16 (read it again if necessary), so we will be
short here. The interrupts of an ARM processor are controlled by the NVIC (Nested Vector Interrupt
Controller). When a peripheral detects an event, it can throw an Interrupt Request (IRQ) if the NVIC
has been configured this way. An Interrupt Service Routine (ISR) is then executed to process the
event. However the ISR are not seen by the developer (you). Indeed STM32CubeMX provides
callback functions that are called by the ISRs. The developer only has to manipulate simple HAL
functions.

Data reception on a STM32 UART follow this scheme. Don’t panic, everything has been
prepared by the STM32CubeMX initialization code generator when you asked for using the
interrupt with the USART2 peripheral, during the project configuration.

The HAL_UART_Receive_IT() is a non-blocking function. It “only” configures an interrupt that
will trigger when a character is received, then the functions ends and the code executions goes on.

When one character is received on the specified USART, the CPU pauses the running
execution and goes to the Interrupt Service Routine instead6. This ISR (which we will not modify)
calls the HAL_UART_RxCpltCallback() callback function. This one is a function that you have to
define by adding the processing you want to realize.

 Take a look at this callback declaration in the stm32l0xx_hal_uart.c file. What does the
__weak qualifier mean?

6 Function UART_RxISR_8BIT() defined in file stm32l0xx_hal_uart.c.

30

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

 You will code an echo application (any received character is sent back) by using the
USART2 peripheral with interrupts. But first, you will create an application that counts every
second and sends the time value to the UART. Both applications together will be merged into one,
the default task (time stamp counter) being constantly running except when interrupted by the
event task (echo).

1. Send a message to the computer only when the application starts

2. Send a message to the computer every second

◦ This message is the value of a time stamp counter, incremented each second

◦ Use the sprintf() function to create a string out of a number (or any variable)

◦ Send this string to the computer, through UART

3. Before going further, confirm the operation of steps 1 and 2

4. Before the while(1) loop, call the HAL_UART_Receive_IT() function to enable the interrupt
when ONE character has been received

◦ You will have to define the character as a global variable to be able to use it in the
callback

5. Between the /* USER CODE BEGIN 0 */ and /* USER CODE BEGIN 0 */ tags, write the
definition of the HAL_UART_RxCpltCallback() callback.

◦ It must instantly send back the received character

◦ It must then activate a new reception with interrupt, so it can process the upcoming
characters

6. Compile, upload, observe.

 Confirm with a screenshot of your serial terminal.

Example of what you could observe on a serial terminal.

31

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.5. Bridge UART (FRENCH ONLY)
Vous allez dans cette partie créer un bridge UART. Dans le langage des bus de

communication, un bridge est une interface qui ne fait que retransmettre un message venant
d’une interface vers une autre, avec généralement une conversion de protocole entre les
interfaces. Autrement dit, cela change la forme du message sans en changer le contenu.

Dans le cadre de cet exercice, aucune conversion de protocole ne sera effectuée.
L’application bridge redirigera simplement le messages de l’UART2 vers l’UART1 d’un même MCU,
et inversement.

III.5.a. Matériel
D’un point de vue matériel, vous avez le choix entre deux solutions.

La première solution nécessite plus de matériel, mais permet de mieux comprendre les
connexions. En complément à votre NUCLEO, il faudra utiliser une deuxième NUCLEO (identique
ou non) avec exactement les mêmes configurations de périphériques. Il faudra alors relier entre
eux les périphériques UART1 de chaque NUCLEO (ne pas oublier la masse). Les deux NUCLEO sont
reliées à un ou deux ordinateurs (mais bien deux terminaux série) via leur STLink VCP (UART2).

La deuxième solution est plus compacte puisqu’une seule NUCLEO suffit. Il faut néanmoins
ajouter un autre convertisseur USB-UART afin de voir les messages de l’UART1. Pour cela vous
pouvez réutiliser le USB UART click (vu en Systèmes Embarqués), en l’apposant sur un Arduino UNO
click shield. Ainsi la NUCLEO sera reliée à un terminal série via son STLink VCP (UART2) et à un autre
terminal série via le USB UART click (UART1).

Cependant les signaux Tx et Rx du périphérique USART1 ne sont pas directement routés sur
les Click Board du shield. Il faut donc relier physiquement, à l’aide de fils, les broches de l’USART1
côté NUCLEO avec les broches de l’UART côté shield. Un peu de recherche avec le schéma
électrique est nécessaire pour y parvenir …

32

UART2

UART2

UART1

UART2
UART1 USB

(UART1)

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

III.5.b. Firmware
 Pour cette partie, créez un nouveau projet avec les propriétés suivantes :

• Board selector : celle que vous avez en TP (voir au dos, référence NUCLEO-xxxxxx)

• Project Name : VOTRENOM_uart_bridge ;

• Project Location : sélectionnez le répertoire connectivity/workspace/uart_bridge/ ;

• Initialize all peripherals with their default Mode ? : Yes.

 Vous aurez besoin des informations suivantes lors de la configuration du MCU :

• Connectivity USART2 → et USART1

◦ Parameter Settings→

▪ Baud Rate = 115 200 baud

▪ Bits de données = 8 bits

▪ Bit de parité : Non

▪ Bit de stop : 1 bit

◦ NVIC Settings→

▪ USART1/2 Interrupt : Enable (ou pas ! Cf cahier des charges ci-dessous)

◦ → GPIO Settings

▪ Relevez les broches utilisées et leur fonction dans le périphérique UART1

•  USART1_TX = ______ USART2_TX = ______

•  USART1_RX = ______ USART2_RX = ______

 Une fois la configuration effectuée : Project Generate Code→ pour générer le code
correspondant aux configurations des périphériques (ou l’icône).

Le cahier des charges de votre application est en apparence assez simple :

• tout caractère reçu sur l’UART1 doit être renvoyé sur l’UART2 (bridge)

• tout caractère reçu sur l’UART2 doit être renvoyé sur l’UART1 (bridge)

• tout caractère reçu sur l’UART2 doit être renvoyé sur l’UART2 (echo)

• uniquement si vous utilisez une NUCLEO et un USB UART click :

◦ tout caractère reçu sur l’UART1 doit être renvoyé sur l’UART1 (echo)

33

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

 En jouant sur avec les différentes fonctions de réception (réception bloquante par polling
ou réception non-bloquante par interruption), répondez à ce cahier des charges.

 Testez en lançant deux terminaux série et après avoir préparé le matériel.

 Tracez un diagramme de séquence illustrant les données échangées, en partant d’un
message issu d’un des deux terminaux.

34

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

IV. Overview
 Go through all points of this part, and write here a summary of what you understood.

This will be available for you if needed for future developments.

1. About the physical layer (wires, signals, voltage levels, logic levels, …)

2. About the protocol layer (number of bits, bit coding, start/stop/parity bits, idle state, ...)

3. About the firmware layer (peripheral configuration, used functions)

4. About the application layer (serial terminal, logic analyzer).

35

SENSORS AND SYSTEMS CONNECTIVITY

Asynchronous serial communication / UART

36

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

PART 3

SPI –
SERIAL PERIPHERAL INTERFACE

37

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

I. Specifications
The SPI (Serial Peripheral Interface) is a serial communication bus initially designed by

Motorola in the early 1980’s. It is not a standard though and no organization has control of it.
There are many variations around the original SPI version, but we will focus on the Motorola
version as it is the most widespread version (some say it it a de facto standard).

The SPI is a serial, synchronous and full-duplex communication bus. It follows a master-
slaves topology. This means the master is the only initiator of the data exchanges and the slaves
are only authorized to answer to the master’s requests.

The master-slave terminology is considered as not acceptable by some market players, due to
its Historical weight7. Consequently those market players decided to change the SPI protocol
terms by removing the Master and Slave words. However no organization has the power to
define the SPI standard, so many market players made their own changes using their own
terms. Nowadays you could see Main, Controller, … to point out the Master and Sub,
Peripheral, Chip, Target, … to point out the Slave.

It has been decided for this course to use the original terminology, because (1) every
electronic engineer knows these terms (whether they use it or not), because (2) not all online
resources (websites, datasheets, tutorials, …) have evolved (and if they did, they did not
chose the same terms) and because (3) from a instructive view this makes a difference with
the terms used in other serial communication protocols.

The SPI protocol uses three signals that are shared by all the bus users:

• SCK : Serial Clock sometimes SCL, SCK

• MOSI : Master Out, Slave In sometimes Main Out, Sub In

◦ SDO (Serial Data Out), PICO (Peripheral In, Controller Out), COTI (Controller Out, Target In), …

• MISO : Master In, Slave Out sometimes Main In, Sub Out

◦ SDI (Serial Data In), POCI (Peripheral Out, Controller In), CITO (Controller In, Target Out), …

Additionally the master holds a direct connection for every slave:

• SS : Slave Select sometimes nSS (not Slave-Select), CS (Chip Select), CE (Chip Enable)

7 https://en.wikipedia.org/wiki/Master/slave_(technology)

38

https://en.wikipedia.org/wiki/Master/slave_(technology

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

II. Frame constitution

The SPI is not a uniformed standard, so any device manufacturer can adapt it its way. This
page describes what a “classical” configuration looks like, even though you could meet
counterexample when using others devices in the wild.

To start a data exchange with a slave, the master must first select it (or enable it) by setting a
usually low logic state to the slave’s SS line.

Then the master provides a clock signal, usually of a 8-stroke duration. Each clock stroke let
the master and the slave generate one bit, usually starting the the most significant bit (MSb).

In the ex a mple below, the master and the slave send their bit at each clock falling edge, and
they read the input bit at each rising edge (letting time for MISO and MOSI lines to stabilize).

The clock idle state and the sample time (read time) of the bits are two parameters that are
usually adjustable. They are respectively called CPOL and CPHA. A low-level idle state is noted
CPOL = ‘0’, while a high-level idle state is noted CPOL = ‘1’. The value CPHA = ‘0’ means that the
first bit sample instant will be on the first clock edge, while CPHA = ‘1’ means that the first bit
sample instant will be on the second clock edge. The mode showed in the figure above is « Mode
(0, 0) » or « Mode 0 »8.

Other variants exist but they will not be discussed here. Let us just cite the three-wire SPI.
(because some of the sensors we will use support it). Being really close to the classical SPI (which is
sometimes called four-wire SPI), the three-wire SPI only has one line dedicated to data exchange
(SISO or MIMO), but is a bidirectional line. The three-wire SPI is a half-duplex version of the SPI,
encountered in even lower power applications.

You got it, many parameters change according to the device manufacture, either on the
master side or on the slave side.

Usually external peripherals (sensors, actuators, …) are in a configuration mode that is set
at the device fabrication. The MCU must adapt (by adjusting the configuration of its SPI
peripheral) to ensure a working communication.

8 No need for more explanations for this course. However the Wikipedia article is good basis if needed:
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Clock_polarity_and_phase

39

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Clock_polarity_and_phase

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

III. Application: Light click
The first device you will communicate with is a Click board™ from the MIKROE company: the

Light click9. It is a daughterboard that that is equipped with a luminosity sensor.

III.1. Daughterboard study
For every device we will use, you can find the useful documents (schematics, datasheets, …)

in the connectivity/datasheets/ folder of the lab archive.

 From those documents, circle out the functional blocks of this board and their function.

 Find and write down the Click board pins that will be used for the SPI communication
with the MCU.

 From the Arduino UNO click shield schematic and the NUCLEO board schematic, find
which MCU pins are connected to the Light click SPI pins (beware, this depends on the slot in which
you will place the Click board).

9 https://www.mikroe.com/light-click

40

https://www.mikroe.com/light-click

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

III.2. SPI peripheral configuration
You have seen that the MCP3201 is an ADC with a SPI interface. To exchange data with this

ADC (and the Light Click), the MCU SPI peripheral must be configured too.

 In STM32Cube IDE, create a new STM32 project (go back to the tutorial if needed).

 You will need the following information while creating the project:

• Board selector: use the NUCLEO board reference (bottom side of the board);

• Project Name: YOURNAME_spi;

• Project Location: select the directory connectivity/workspace/spi/;

• Initialize all peripherals with their default Mode ?: Yes.

 You will need the following information while t he MCU configuration step:

• Connectivity SPI1→

◦ Mode : Full-Duplex Master

◦ Hardware NSS10 Signal : Disable

◦ Basic parameters : Motorola // 8 Bits // MSB First

◦ Clock parameters : Prescaler = 2 // Clock polarity = Low // Clock Phase = 1 Edge

◦ GPIO settings : use your answers to the previous questions to map the SPI1_SCK //
SPI1_MISO // SPI1_MOSI signals to the pins you have noted.

• System Core GPIO→

◦ use you answers to the previous questions to map the CS/SS signal to its pin.

▪ On the device view: left-click on the pin → GPIO_Output

▪ On the « GPIO Mode and Configuration » tab, P?? configuration :

• GPIO Output level = High

• …

• User Label = LIGHT_nSS

 Generated the code () and check that the main() function contains a call to the
MX_SPI1_Init() function/

The STM32CubeMX initialization code generator shows one again its use, as the SPI
peripheral is ready for use in few minutes. To compare with the USART peripheral, the “SPI/I2S”
chapter of the STM32L0x3 user manual counts 50 pages (for a total of 1,040). The peripheral itself
uses nine registers.

10 NSS = Not Slave Select = SS, or also NCS = Not Chip Select = CS

41

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

III.3. light_click driver
Of course the SPI peripheral is configured and waiting to be used, but we will first write

driver functions that will specifically address the Light click through the SPI bus. A draft version of
the driver files has been written and is provided in the lab archive. You will first import them and
then complete them.

 The driver files are located in the connectivity/workspace/drivers/ folder. Copy both
files light_click.c and light_click.h and paste them into the project workspace, i.e. the
…/CM4/Core/Src/ and …/CM4/Core/Inc/ folders, respectively. From the IDE project explorer, you
may need to refresh (F5) these two folders for the new files to appear.

At first the header file seems “rather” simple to use: there is a initialization function and two
read functions. This is because the MCP3201 is also rather simple: it is not configurable and the
only thing it does is sending a converted value to the SPI MISO line. In the header file you will also
find a LIGHT_handle_t structure. To keep it simple a handle is an object that contains information
(configuration parameters, state, …) of a resource.

Let us get to the C file now. It contains the definitions of the three functions discussed
above. But these definitions are empty, you will complete them step by step.

III.3.a. Handle initialization
Read the light_click.h header documentation (Doxygen comments).

  What is the purpose of the hspi field in the LIGHT_handle_t structure ? Which pins (or
which signals) can it control?

  What is the purpose of the SS_Port and SS_Pin fields in LIGHT_handle_t? Which pin (or
which signal) can it control?

  What is the purpose of the LIGHT_init() function ? Which parameters does it need?

42

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

 Browse the  main.c and main.h files to find the SPI peripheral handle and the definition of
the SS pin number and port. What are their names?

 In the light_click.c file, find the name of the Light click handle.

 Complete the LIGHT_init() function definition, according to the comments.

 In the main() function, write the code below so that the Light Click initialization function
is called. Remember that the function documentation in light_click.h gives you hints about the
arguments needed by this function.

/* USER CODE BEGIN 2 */
HAL_UART_Transmit(&huart2, (uint8_t*)"\r\nApp initialization...\r\n",
 strlen("\r\nApp initialization...\r\n"), HAL_MAX_DELAY);
LIGHT_init(/** @TODO */);
HAL_UART_Transmit(&huart2, (uint8_t*)"App running...\r\n",
 strlen("App running...\r\n"), HAL_MAX_DELAY);
/* USER CODE END 2 */

 Compile. If there is any error or warning, fix your code. Repeat until everything is fine.

Note that it is no use executing the program now as you have not written the read function
yet.

43

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

III.3.b. Read function
Let us switch now to the LIGHT_readBrightnessRaw() function development. This function is

the simplest of the two read functions.

 Read section « 5.0 Serial communications » of the MCP3201 datasheet. Which signals are
necessary and what are the conditions to fulfill in order to trigger a conversion read out?

 Write the number of clock strokes necessary for reading a complete data. What happens
when the clock still beats after a complete data has been received?

 How should we do to read a complete acquisition, knowing that a classical SPI peripheral
can only sends 8-stroke long clock signals11? The answer is in section « 6.1 Using the MCP3201
Device with Microcontroller SPI Ports ».

 What operations should we perform on the received data to make it a 12-bit value?

11 It is actually possible to configure this SPI peripheral to use frame ranging from 4-bit to 16-bit. We keep a
8-bit size to stay close to the original SPI version (and to remain compatible with the next Click boards).

44

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

 What is the name blocking read function of the SPI peripheral? What arguments does it
need?

 With your previous answers, complete the LIGHT_readBrightnessRaw() function so it
triggers a two-byte read out, and then converts them into a 12-bit integer value. The latter will be
returned through the *brightness_raw pointer.

 In the while(1) loop of the main() function, add the following code.

HAL_Delay(1000);

// LIGHT CLICK VALIDATION
LIGHT_readBrightnessRaw(&brightness_raw);
sprintf(uart_out, "LIGHT\t Raw brightness = 0x%04X = %5d\n\r", brightness_raw,
brightness_raw);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

 Compile, fix the errors and upload the firmware into the target MCU.

 Open a serial terminal and observe the result. Does the displayed value seem correct?

It is high likely that the MCU only received 0x0000’s. If that is the case, this means the slave
(the Light click) does not respond to the master requests. We need to use a logic analyzer to
understand that better.

III.3.c. Decoding the exchanged frames
 Use the logic analyzer to probe the four SPI signals. You have previously noted the pin

number of these signals and you also have the NUCLEO board schematic.

 With a simple capture you should observe two eight-stroke clock signals. This means the
master MCU is actually asking for a read out but the slave does not seem to react. Which signal
should be sent to the slave so that it knows it should process the request? Did you forget it?

 Th is signal is controlled by a GPIO pin configured as a GPIO_Output. Which function should
you use to drive a GPIO? (hint: you used it to control the LED).

45

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

 Complete the LIGHT_readBrightnessRaw() function definition so that the slave is selected
before asking for a read out, and then the slave is deselected.

 Compile, upload into the MCU and confirm with the logic analyzer that the slaves does
answer to the master requests. Make a screenshot of this capture.

 Also validate with a serial terminal that the luminosity value is valid and varies.

III.3.d. Floating point read function
We could have decided to take every Light click component into account and get a value

more physically accurate than just an integer value between 0 and 4095. Yet we want to keep it
simple and we will only ask for an irradiance value in percentage. This is the objective of the
LIGHT_readBrightnessPercentage() function.

 Complete the definition of LIGHT_readBrightnessPercentage() so it matches the
requirements written in the Light click header file.

 In the main() function infinite loop, add the following lines.

LIGHT_readBrightnessPercentage(&brightness_percent);
sprintf(uart_out, "LIGHT\t Brightness percentage = %6.2f%%\n\r", brightness_percent);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

Note: it is likely that your toolchain shows you this warning message.

« The float formatting support is not enabled, check your MCU Settings from "Project
Properties > C/C++ Build > Settings > Tool Settings", or add manually "-u _printf_float" in
linker flags. »

Follow this advice to remove the warning but mostly to be able to send floating-point
numbers to the serial terminal.

 Confirm the operation with a serial terminal.

Congratulations! You have just reached a milestone in your embedded development skills by
developing a driver for a device communicating through SPI!

46

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV. Application: Accel 2 click
We will now use another Click board™ : the Accel 2 click12. As you can imagine this is an

accelerometer. This device communicates using an SPI interface, just like the Light click, but you
will see that this one is more complex.

IV.1. Sensor study
In this case studying the schematics shows no interest as the Accel 2 click contains only one

Integrated Circuit (IC): the 3-axis LIS3DSH accelerometer from STMicroelectronics. Still we can see
the presence of four jumper connectors on the left of the schematics.

 To which physical parts on the board does these jumper correspond to? What is their
function?

 Plug the Accel 2 click into an Arduino UNO click shield slot and note to which MCU pins are
connected the MOSI, MISO, SCK ans CS signals.

12 https://www.mikroe.com/accel-2-click

47

https://www.mikroe.com/accel-2-click

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.2. SPI peripheral configuration
You should have noted that there is no need to reconfigure the SPI peripheral as the Accel 2

click uses the same pins as the Light Click. Indeed that is the point of using a communication bus.

The MOSI, MISO and SCK signals are common to the master and all the slaves.

However the CS signal is unique for each slave. So we still need to set the GPIO that drives
the Accel 2 click’s CS signal.

 Carry on the YOURNAME_spi STM32CubeIDE project.

 Open the YOURNAME_spi.ioc file so you can configure the CS pin.

• System Core GPIO→

◦ On the pinout view: left click on the pin → GPIO_Output

◦ On the “GPIO Mode and Configuration” tab, P?? configuration:

▪ GPIO Output level = High

▪ …

▪ User Label = ACCEL_2_nSS

 Generate the code ().

You should observe that the MX_GPIO_Init() function (in main.c) now contains new code
lines, in charge of this GPIO initialization.

48

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.3. accel_2_click driver
Let us deal the the Accel 2 click driver.

 The driver files are located in the connectivity/workspace/drivers/ folder. Copy the
accel_2_click.c and accel_2_click.h files and paste them into …/CM4/Core/Src/ and
…/CM4/Core/Inc/ project folders, respectively. From the Project explorer tab (left side of the IDE)
you might need to refresh (F5) both folder to see the new files appear.

At first the header file seems much longer than the Light click header. But with a deeper
looks the first part only contains macro-constants (which will be studied later). And the following
part is rather close to the previous driver: we find a structure declaration (ACCEL_2_handle_t, which
contains the Accel 2 click initialization parameters), an initialization function, few read functions
and a write function (all listed below).

void ACCEL_2_init(SPI_HandleTypeDef *hspi, GPIO_TypeDef *SS_Port, uint16_t SS_Pin);

void ACCEL_2_writeReg(uint8_t reg_addr, uint8_t reg_value);

void ACCEL_2_readReg(uint8_t reg_addr, uint8_t* reg_value, uint8_t n_bytes);

void ACCEL_2_readX(float* x_value);
void ACCEL_2_readY(float* y_value);
void ACCEL_2_readZ(float* z_value);
void ACCEL_2_readXYZ(float* x_value, float* y_value, float* z_value);

In the C file, the functions definitions are still yours to complete. We will write them step by
step.

IV.3.a. Handle initialization
 Browser the  main.c and main.h files to find the SPI peripheral handle and the SS port

number and pin number. What are their names?

 Start to write the definition of the ACCEL_2_init() function (comment @TODO (1)) by
initializing the Accel 2 handle with the function parameters.

 In the main() find the adequate location to call the Accel 2 click initialization function.
Compile and fix your code until there is no warning and no error.

It is no use to upload the firmware onto the target MCU as the read and write function have
not been completed yet.

49

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.3.b. Accel 2 click read function
 From the chapter “5 Digital interfaces” of the LIS3DSH datasheet, three communication

modes are available. Which are they?

 Datasheet’s table 8 show that the signals name is different from the classical one (CS,
SCK, MOSI, MISO). Indeed the signals name can change with the manufacturer’s habit. Note here
the translation if necessary.

 Like all self-respecting datasheets, this one explains how to access to a data stored in the
device. Find these information and write them down here.

 From the previous answer, complete the definition of the ACCEL_2_readReg() function.
You can also read the Doxygen comment block that documents this function (in the .h).

 In the while(1) loop of the main() function, add the lines below. Compile and fix the
errors and warnings.

ACCEL_2_readReg(ACCEL_2_REG_WHO_AM_I, &reply, 1);
sprintf(uart_out, "ACCEL\t Who am I = 0x%02X\n\r", reply);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

 What does this code does? What value should be displaying onto the serial terminal?

 Confirm with a serial terminal screenshot.

50

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

 Also make a screenshot of a frame captured by a logic analyzer. Compare the frame with
“Figure 8. SPI read protocol” of the datasheet. You should observe some differences. Let us explain
them with the next questions.

 According to the datasheet, what should be the idle state of the SCLK line? What is the
idle state on your captured frame?

 According to the datasheet, when do the MOSI and MISO lines should sample their input
bits? What do you observe on your captured frame.

 According to the datasheet, when do the MOSI and MISO lines should send their output
bit? What do you observe on your captured frame?

These information correspond to the (CPOL, CPHA) modes. The CPOL (Clock POLarity)
parameters indicates the clock line idle state (‘0’ = low level, ‘1’ = high level). The CPHA (Clock
PHAse) parameter indicates if the MOSI/MISO bits are sampled on the first edge (‘0’ value) or on
the second edge (‘1’) of the clock signal.

Thus modes (0, 0) and (1, 1) are compatible for exchanging data because in both cases the
bits are output on the clock falling edge and they are read on the clock rising edge. The clock idle
state is the only difference. Similarly (0, 1) and (1, 0) modes are compatible together.

 To which mode corresponds the section “5.2 SPI bus interface” of the LIS3DSH datasheet?

 In which mode has our SPI1 peripheral been configured? The answer is in the .ioc file.

Conclusion: configured this way the MCU SPI peripheral is compatible with the LIS3DSH, even
though this is not exactly mode required by the accelerometer.

By the way, if you go back to the Light Click ADC, the MCP3201 datasheets says: “SPI Mode
0,0 (clock idles low) and SPI Mode 1,1 (clock idles high) are both compatible with the MCP3201 ”,
proven by the figures 6-1 and 6-2 that presents both modes.

51

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.3.c. Accel 2 click write function
The LIS3DSH possesses many registers and some of them contain the sensor’s configuration

parameters. We will have to set them to specific values in order for the LIS3DSH to work according
to our needs.

 Find in the datasheet the information explaining how to modify a value stored in a
register. Write them down here.

 Complete the definition of the ACCEL_2_writeReg() function.

 Confirm by adding the following code to the while(1) loop, in the main().

ACCEL_2_writeReg(ACCEL_2_REG_VFC_1, 0xAB);
ACCEL_2_readReg(ACCEL_2_REG_VFC_1, &reply, 1);
sprintf(uart_out, "ACCEL\t VCF_1 = 0x%02X\n\r", reply);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

ACCEL_2_writeReg(ACCEL_2_REG_VFC_1, 0x00);
ACCEL_2_readReg(ACCEL_2_REG_VFC_1, &reply, 1);
sprintf(uart_out, "ACCEL\t VCF_1 = 0x%02X\n\r", reply);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

 What are the operations performed by those lines? (Note: you are not asked to explain the
role of the VFC_1 register1: it will not be used later and its value has no effect of the sensor’s operation
in our case).

 Confirm the operation of the ACCEL_2_writeReg() function with a serial terminal.

 Capture with a logic analyzer the write operation followed by the read operation.

52

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.3.d. LIS3DSH configuration
Now that the SPI communication functions between the MCU and the Accel 2 click are

operational, we will be able to configure the LIS3DSH so it matches our requirements. This is the
main difference with the previous sensor (Light click) that was no configurable.

Look at chapter “6 Register mapping” of the datasheet. There is a table that lists all the
registers, with their address, their access mode (r, w, r/w), their description and maybe their
default value (i.e. at power on). If you compare this datasheet’s table with the first part of the
accel_2_click.h file, you will find out that the list of macro-constants defines all the registers by
their address so that they can be used with the C driver.

When an experimented developer opens the datasheet of a new sensor, he will always look
for the registers named CTRL, CFG, SETTINGS, or anything similar. Those register often contains the
adjustable parameters of the device. With few back-and-forths in within the datasheet, he can
obtain a configuration that does the trick. Then a detailed datasheet reading process is necessary
to set the parameters in order to match perfectly with the requirements (and maybe optimize its
power consumption, ...). However being able to fully configure a sensor is not the prime objective
of this course. As a consequence the registers and parameters identification phase is prepared by
the subsequent questions.

 Put yourself in a expert developer’s shoes and find the registers that should help you
configure the LIS3DSH (there are 6 or 7 of them).

After reading the description of those registers, a quick look at it should let us extract the
interesting bits (the highlighted words are the keywords the export developer looks for).

53

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

 Find the previous register and explain the value that should be written to its bits.

Before actually configuring a device, it is use to check if it is reachable through the SPI bus.
This is the role of the WHO_AM_I register that contains a predefined value: by reading this register
and comparing it to its expected value, one can confirm (or disconfirm) the sensor’s operation.

 Complete the definition of ACCEL_2_init() following the @TODO (2) comment (checking
the sensor’s presence) and the @TODO (3) comment (sensors configuration).

 Compile, upload into the target.

 Confirm with a serial terminal that the firmware does not continue if the sensor is not
plugged in when starting the application.

IV.3.e. Read the acceleration values
We will focus on reading the z-axis acceleration value by defining the ACCEL_2_readZ()

function. If it is successful we will only have to replicate the code for the other read functions.

 First add the following code to the while(1) loop, in the main() function. This will let us
test the z-axis read function on a regular basis (even if it is not operational yet).

float accel_z = 0.0;
ACCEL_2_readZ(&accel_z);
sprintf(uart_out, "ACCEL\t z-axis = %+f g\n\r", accel_z);
HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

 Compile, upload and observe the result on a serial terminal. The ACCEL_2_readZ()
function’s body is empty, so it is expected to always print 0.000000 on the terminal. At least we will
keep track of the read function developments.

As it happens, let us switch to the ACCEL_2_readZ() function’s development.

 @TODO (1): from the datasheet, determine which register(s) should be accessed to retrieve
the z-axis acceleration value.

 @TODO (2): from the retrieved data, build a floating-point number. It can be useful to use
an intermediate 16-bit integer variable.

 Compile, upload and observe the result on a serial terminal. This time the displayed
acceleration value should vary, especially when moving the board.

54

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

Of course the displayed value fluctuates with the board orientation, but it does not fit with
acceleration units (neither in m·s-2 nor in g). The sensor’s datasheet gives us the following
information:

 What is the meaning of both parameters?

 What are the FS bits in the test condition? What are their values in our case?

 How can that help us to obtain an acceleration value in g unit?

 @TODO (3): build the z_value number in the required unit (g).

 Compile, upload and observer the result on a serial terminal. Confirm that the
acceleration value ranges from -1.0 g and +1.0 g, depending on the board orientation.

55

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

IV.3.f. Adjusting: full-scale
With all the previous work, you have developed a driver that matches basic requirements,

but at least it is operational. The LIS3DSH offer various functionalities (such as state machines that
could be used for VR headsets, motion-controlled interface, …). This is not this course’s goal to
make a demonstration of this sensor’s full capabilities. However we can still refine some details to
show you how it should be done.

 Let us clean the while(1) content (main()):

• Change the loop period to 100 ms (instead of 1 s);

• Comment or remove all the other lines, except for the z-axis readout and display.

 Confirm that the acceleration value is displayed in the serial monitor.

 Shake the target: you should see that the acceleration value saturates.

 Which register and which bits can change the sensor’s sensitivity? What should be their
values so that the sensor works on the largest range?

 Complete the definition of the ACCEL_2_init() function by setting the new full-scale
value (@TODO (4) comment).

 Compile, upload, shake, confirm.

Oopsie, the acceleration value is not good anymore! As a matter of fact, the acceleration
read function depends on the sensitivity value, which relies on the full-scale. Instead of writing a
function that is valid for one sensitivity value only (thus for one full-scale value only) we will modify
its definition to make it adaptable.

 In the definition of ACCEL_2_readZ(), remove the code that corresponds to the @TODO (3).

 At @TODO (4), perform a full-scale readout.

 At @TODO (5), perform a test on the full-scale value and apply the corresponding
sensitivity coefficient to the retrieved acceleration value.

 Compile, upload, try and confirm.

 If the test application is valid, complete and confirm the other read functions, for the
other axes: ACCEL_2_readX(), ACCEL_2_readY() and ACCEL_2_readXYZ().

56

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

V. Overview
 Go through all points of this part, and write here a summary of what you understood.

This will be available for you if needed for future developments.

1. About the physical layer (wires, signals, voltage levels, logic levels, …)

2. About the protocol layer (number of bits, who owns each line, ...)

3. About the firmware layer (peripheral configuration, used functions)

4. About the sensor layer (parameters, registers access, ...).

57

SENSORS AND SYSTEMS CONNECTIVITY

SPI – Serial Peripheral Interface

58

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

PART 4

I²C –
INTER-INTEGRATED CIRCUIT

59

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

I. Specification
Developed in 1992 by Philips Semiconductors (now NXP), the I²C bus is a serial,

synchronous, half-duplex communication bus that uses a master-slaves topology. Contrary to SPI,
I²C offers the possibility of having multiple masters on the bus.

The I²C bus is made out of two bidirectional lines:

• SCL: Serial Clock, only controlled by the master nodes;

• SDA: Serial Data, controlled sometimes by a master node, sometimes by a slave node.

Both lines are pulled-up to a high logic state with two pull-up resistors.

The main advantage of I²C (when compared to SPI) is its very small need of wire: only two
lines are necessary, while SPI requires 3+n wires (n being the number of slaves). As a matter of
fact, the slave selection with I²C is not made with an electric line but with an address frame. This
leads to the drawback of I²C: it is slower than SPI (effective data rate).

To exchange data with a slave, the master first sends a start bit (‘0’), 7 address bits for
selecting the slave, an access mode bit (Read/Write), then lets the slave acknowledge (‘0’). Then
depending on the access mode (Read/Write), the SDA line will be controlled either by the master
or the addressed slaved. In both cases, the master is always the one that decides to stop the
exchange with a stop bit (and, in read mode, the master does not acknowledge the last frame).

60

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II. Application: Weather click
Let us study the I²C protocol through another Click Board: the Weather click.

II.1. Sensor study
Once again, the Click board is just a simple connector interface for the embedded sensor (a

Bosch Sensortec BME280), as you can see with this very simple schematics.

  Which physical quantities can the BME280 sensor measure (see its datasheet)?

 On this board, which signals are necessary for an I²C communication?

 Using the Arduino UNO click shield schematics and the NUCLEO board schematics, find the
MCU pins to which are connected the I²C signals of the Weather click.

 Find the J4A jumper on the schematics and note its position (0 or 1) on the board.

 What is the purpose of the R2 and R3 resistors? Hints can be found in section “6.2 I²C

interface” of the BME280’s datasheet.

61

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.2. I²C peripheral configuration
As you could have seen, the communication interface of the Weather click is an I²C bus. Let

us configure the I²C peripheral on the STM32 microcontroller.

 With STM32CubeIDE, create a new STM32 project (read the tutorial if necessary).

 You will need the following information while creating the project:

• Board selector: use the NUCLEO board reference (bottom side of the board);

• Project Name: YOURNAME_i2c;

• Project Location: select the directory connectivity/workspace/i2c/;

• Initialize all peripherals with their default Mode ?: Yes.

 You will need the following information while the  MCU configuration step:

• On the device view: select the I²C mode on the two pins marked previously.

◦ That will make you identify the I²C peripheral to be used (I2C1, I2C2 or I2C3)

• Connectivity I2Cx→

◦ I2C : I2C

◦ anything else by default

 Generate the code () and check that the main() function now contains a call to the
MX_I2Cx_Init() function.

II.3. weather_click driver
Just like the Click boards that have been previously used in this course, we will develop a

driver so that any user will be able to exchange information with the Weather click. The driver files
are located in the connectivity/workspace/drivers/ directory.

 Copy the weather_click.c and weather_click.h files and paste them into the
…/CM4/Core/Src/ and …/CM4/Core/Inc/ project folders, respectively. In the Project explorer (left
side of the IDE), you may need to refresh (F5) the folders to see the new files appear.

Reading these files you should be now familiar with their contents. Only this time you can
see in the weather_click.c file that some functions are declared and defined with the static
keyword.

  What does the static qualifier mean for a function and in C language?

62

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.3.a. Handle initialization
Read the documentation (Doxygen comment blocks) of the weather_click.h file.

  What is the purpose of the hi2c field of the WEATHER_handle_t structure? Which pins (or
which signals) can it control?

  Which parameters should we pass to the WEATHER_init() function?

  In the main.c file, find the declaration of the I²C peripheral’s handle? What is its name?

 You only have found its declaration, but where is  this handle defined?

 Start writing the definition of the WEATHER_init() function (@TODO (1) comment) by
initializing the handle with the function arguments.

 In the main() function, find the most convenient place to call the Weather click
initialization function. Compile and fix all errors and warnings.

It is no use uploading the firmware into the target MCU because the read and write functions
have not been written yet.

63

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.3.b. Weather click read function
  From the BME280 datasheet, find the information that explain how to read data from the

sensor’s registers, through its I²C interface. Write the steps down here.

 What is  your slave address?

 Defined the WEATHER_I2C_ADDR macro-constant consequently.

 In the I²C peripheral HAL function, find and write down here the blocking transmit and

receive functions.

 With these two HAL functions and the indications in the BME280’s datasheet, complete
the definition of the WEATHER_readReg() function in the weather_click.c file.

In order to test our readout function, let us read the id register value.

 What is the address of this  id register? What is its purpose? What value should we read?

 Test the WEATHER_readReg() function in the main() by reading the id register’s value.

 Send it to the serial terminal.

The value does not seem to match our expectations. If it does, it might your lucky day!

64

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

 Capture the exchanged messages with a logic analyzer. Check the frames and use an I²C
protocol decoder. This is what you should observe.

 How many bytes should we observe, according to the datasheet’s figure 10? Explain.

 What are the two bytes captured on the frames above?

 Which is the decoded address here? Is it the address you specified with your program?

(Note: the address bits (and data bits) are read on a SCL rising edge).

  Compare these address bytes to the ones in the datasheet’s figure 10?

 What is the meaning of the “N” or “ACK” bit indicated by the decoder? Is it normal?

65

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

 Get back to the HAL functions. Read the Doxygen comment block of the I²C transmit

function HAL_I2C_Master_Transmit(). What is written about the DevAddress parameter?

 Same question for the  HAL_I2C_Master_Receive() function.

Indeed the sensor’s address is 7-bit long (‘The 7-bit device address is 111011x‘). But the I²C
standard requires the address to take the seven most significant bits so that the least significant
bit (bit 0) is used to indicated if this is a write operation (value ‘0’) or a read operation (value ‘1’).

 Change the WEATHER_I2C_ADDR macro-constant definition to use the most significant bits
(in other works, let the LSb space empty).

 Compile and try again to read the id register value and display in on a serial terminal.

 Confirm that the value displayed on the serial terminal is the expected value.

 Capture the exchanged frames with a logic analyzer.

 Using the frame decoder and datasheet’s figure 10, explain the role of each bit on the
SDA line, specifying the bit producer (master or slave). Use as many details as possible.

What you should observe is that the SDA can be controlled by the master and the slave, but
each of those has dedicated time slots (they cannot control the SDA line at the same time). Thi s
implies that the I²C protocol is half-duplex.

The default level of the SDA line is the high logic state, because of its pull-up resistor. More
several devices can use the same SDA line because those ICs use open-drain outputs.

 How does a device writes a logical ‘0’? And a logical ‘1’?

 Which is the logic state of an acknowledgment? Why is it not the opposite?

66

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.3.c. Weather click write function
  From the BME280’s datasheet, find the information for writing into the sensor’s registers

using an I²C interface. Write down here the different steps.

 With the I²C HAL functions and the datasheet’s indications, complete the definition of the
WEATHER_writeReg() function in weather_click.c.

We will test and confirm the write function later on. Firstly we will find which settings should
be written into the BME280 so it matches our requirements. Only then we will write those values
into the sensor’s registers.

II.3.d. BME280 configuration
Like numerous sensors, and like the LIS3DSH (accelerator) studied in the previous part, the

BME280 has registers that contains adjustable parameters.

67

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

 Find in the datasheet the three control registers to configure.

 In one of those registers, the  mode[1:0] field must be set. Write the three operation
modes of the sensor. Which one allow us to perform a periodic readout of the physical quantities?

 For the three control registers, find the bits values following these requirements:

• measure all three physical quantities, with no oversampling

• read out every 500 ms

• no filter

Now that the control parameters have been determined, let us switch now to the device’s
configuration by completing the definition of the WEATHER_init() function.

 The first thing to do when trying to configure a device is to check if it is reachable.
Complete the sensor’s identification test following the @TODO (2) comment (you can delete the
equivalent code, now redundant, in the main() function).

 Configure the BME280 by writing the values determined above into the control registers.
Note that the write order has an impact (see datasheet).

 Last read the sensor’s calibration parameters13 by calling the WEATHER_getCalibParams()
function after the @TODO (4) comment. This function is provided with its complete definition.

13 Calibration parameters will be explained in “ Part 4 - II.3.e “.

68

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

The initialization function is now written. We will test and confirm it. This will be the occasion
to try the operation of the WEATHER_writeReg() function too.

 I n the main(), call the WEATHER_init() function at the application’s start.

 I n the main loop of the application, write instructions that read the value of the
configured registers.

 Display their values onto the serial terminal and compare them to the expected values.

 Once that the initialization and write function have been confirmed, use a logic analyzer
to capture a write operation into a BME280’s register.

 Using the decoding tool and datasheet’s figure 9, explain the role of each bit on the SDA
line, and specify which node (master or slave) wrote each bit. Be as accurate as possible.

Do not pass this point until this page has been checked by the teacher.

69

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.3.e. Measurements readout
In order to understand the various settings that can impact the temperature, pressure and

data readouts, we need to carefully read the BME280’s datasheet. Yes, this device is more complex
than it seems. The following datasheet sections must be read to answer the upcoming questions:

• 3.4 Measurement flow (3.4.3 included)

• 4. Data readout

• 5.4 Register description (for the registers you will use)

 What is the point of oversampling acquisitions?

 What is the point of using a filter (here and infinite impulse response filter)?

 What is the resolution of the humidity, pressure and temperature values in our case (we
want no filter, no oversampling)?

 W hich registers holds the results of all three measurements?

 Does the number of bits in these registers match with the resolution in our case? What

should we do if there are more bits in the registers than in the expected resolutions?

70

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

 Let us take the temperature measurement as an example. After reading the temperature

value out of the registers, how do you build a temperature value in a integer-type C variable?

The integer value is actually not a true temperature value. It is written in the datasheet that
each sensing element is different (i.e. from a device to another). As a consequence the calibration
parameters of each BME280 have been determined during the manufacturing process and stocked
into the device’s NVM (Non-Volatile Memory). These parameters, accessible through some
registers, will be used to “compensate” the measured values in order to calculate the true values.

The datasheet gives example compensation codes for the three quantities (temperature,
pressure, humidity) in section “4.2.3 Compensation formulas”. In theses code extracts, the values
are stored on 32-bit integer variable using a fixed-point arithmetic. Bosch Sensortec also provides
a floating-point arithmetic version of those codes on its GitHub repository14.

In the weather_click.c file, the given codes have been rewritten to match the driver’s
coding style (function prototypes, values, structures, …). We chose to use the fixed-point
arithmetic version rather than the floating-point arithmetic one.

 Why do we have to make the operations on fixed-point variables and not on floating-

point? Hint: this is due to our MCU15.

 What is a fixed-point number? What are the advantages of this notation? Have a look on

the Internet or ask the teacher.

14 https://github.com/boschsensortec/BME280_driver/tree/master
15 This questions is sometimes wrong, depending on the used STM32…

71

https://github.com/boschsensortec/BME280_driver/tree/master

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

Take a look into the Doxygen comment blocks of the three compensation function, in the
weather_click.c file. The interesting point here is the format and the unit of the returned values,
i.e. fine_temp, fine_press and fine_hum16.

 Write a pseudo-code of the conversion of the temperature value  fine_temp (32-bit integer
format, in 0.01 °C) into a temp_degC in floating-point format, in °C.

 Same question for converting  fine_hum (Q22.10 fixed-point integer format, % RH) into
hum_rh (floating-point format, % RH) (% RH = percentage of relative humidity).

 Same question for  fine_press (Q24.8 integer format, in Pa), to press_hPa (floating-point
format, in hPa).

With the answers to the previous questions it is now possible to complete the definition of
the read functions for all three quantities.

 Complete the definition of the WEATHER_getTemperature(), WEATHER_getPressure() and
WEATHER_getHumidity() functions, following your previous answers.

 Complete the definition of the WEATHER_getAll() function, by simply calling the three
functions.

 Test this functions in the main() using the following code lines:

 float temp, press, hum;
 WEATHER_getAll(&press, &temp, &hum);
 sprintf(uart_out, "WEATHER\t temperature = %f degC\n\r", temp);
 HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);
 sprintf(uart_out, "WEATHER\t pressure = %f hPa\n\r", press);
 HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);
 sprintf(uart_out, "WEATHER\t humidity = %f %%RH\n\r", hum);
 HAL_UART_Transmit(&huart2, (uint8_t*)uart_out, strlen(uart_out), HAL_MAX_DELAY);

 Confirm with a serial terminal.

16 These information come from the datasheet, section ‘4.2.3 Compensation formulas’.

72

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

II.4. Overview
 Go through all points of this part, and write here a summary of what you understood.

This will be available for you if needed for future developments.

1. About the physical layer (wires, signals, voltage levels, logic levels, …)

2. About the protocol layer (number of bits, who owns each line, ...)

3. About the firmware layer (peripheral configuration, used functions)

4. About the sensor layer (parameters, registers access, ...).

73

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

74

SENSORS AND SYSTEMS CONNECTIVITY

I²C – Inter-Integrated Circuit

PART 5

GLOSSARY

75

SENSORS AND SYSTEMS CONNECTIVITY

Glossary

LSb / MSb Least/Most Significant bit
LSB / MSB Least/Most Significant Byte

MCU Microcontroller Unit
CPU Central Processing Unit
Peripheral Internal hardware component of the MCU, designed for a specific task
GPIO General Purpose Input/Output, peripheral that controls the MCU pins

STM STMicroelectronics, French-Italian semiconductor company
STM32 32-bit MCU series from ST, built around ARM Cortex-M cores
STM32CubeIDE Integrated Development Environment for ST processors
STM32CubeMX Graphical initialization code generator for ST processors
HAL Hardware Abstraction Layer, functions for an easy use of MCU peripherals
STLink VCP STLink Virtual Com Port, accessible through the USB link of the NUCLEO

NVIC Nested Vector Interrupt Controller, ARM CPUs interrupt controller
IF Interrupt Flag, indicates that an event has occurred
IRQ Interrupt Request, asks the CPU to pause its execution
ISR Interrupt Service Routine, function executed when an IRQ stops the CPU
Callback Function called by an ISR and which definition must be written by the dev

UART Universal Asynchronous Receiver-Transmitter, serial comm peripheral
USART Universal Synchronous-Asynchronous Receiver-Transmitter
Tx Transmit line
Rx Receive line

SPI Serial Peripheral Interface
Bidirectional, full-duplex, synchronous serial bus, designed by Motorola

MISO Master Main In, Slave Sub Out
MOSI Master Main Out, Slave Sub In
SS Slave Select, active low
CS Chip Select, active low

I²C Inter-Integrated Circuit
Bidirectional, half-duplex, synchronous serial bus, designed by Philips

SDA Serial Data Line
SCL Serial Clock Line
ACK Acknowledgment
NACK Non-Acknowledgment

76

SENSORS AND SYSTEMS CONNECTIVITY

Glossary

77

SENSORS AND SYSTEMS CONNECTIVITY

Glossary

78

SENSORS AND SYSTEMS CONNECTIVITY

Glossary

79

	Contact
	Resources
	Part 1 Prelude
	I. Set the context
	I.1. Sensors and systems connectivity
	I.2. How to work
	I.2.a. Assessment
	I.2.b. Notation

	II. Hardware and software needs
	II.1. In short
	II.2. Hardware and software presentation
	II.2.a. STMicroelectronics NUCLEO boards
	II.2.b. MIKROE Click board™
	II.2.c. IDE – Integrated Development Environment

	III. Starting with the environment
	III.1. Creating a project
	III.2. Generated project insight
	III.3. Control the GPIOs with the HAL functions
	III.4. Use interrupts

	Part 2 Asynchronous serial communication / UART
	I. Presentation
	II. Specifications
	III. Implementation on a STM32
	III.1. Project creation
	III.2. Generated project insight
	III.3. UART transmission
	III.3.a. STLink Virtual COM Port
	III.3.b. Validation with a serial terminal
	III.3.c. Analysis of the transmitted frame with a logic analyzer

	III.4. UART reception
	III.4.a. Blocking reception
	III.4.b. Non-blocking reception

	III.5. Bridge UART (FRENCH ONLY)
	III.5.a. Matériel
	III.5.b. Firmware

	IV. Overview

	Part 3 SPI – Serial Peripheral Interface
	I. Specifications
	II. Frame constitution
	III. Application: Light click
	III.1. Daughterboard study
	III.2. SPI peripheral configuration
	III.3. light_click driver
	III.3.a. Handle initialization
	III.3.b. Read function
	III.3.c. Decoding the exchanged frames
	III.3.d. Floating point read function

	IV. Application: Accel 2 click
	IV.1. Sensor study
	IV.2. SPI peripheral configuration
	IV.3. accel_2_click driver
	IV.3.a. Handle initialization
	IV.3.b. Accel 2 click read function
	IV.3.c. Accel 2 click write function
	IV.3.d. LIS3DSH configuration
	IV.3.e. Read the acceleration values
	IV.3.f. Adjusting: full-scale

	V. Overview

	Part 4 I²C – Inter-Integrated Circuit
	I. Specification
	II. Application: Weather click
	II.1. Sensor study
	II.2. I²C peripheral configuration
	II.3. weather_click driver
	II.3.a. Handle initialization
	II.3.b. Weather click read function
	II.3.c. Weather click write function
	II.3.d. BME280 configuration
	II.3.e. Measurements readout

	II.4. Overview

	Part 5 Glossary

