ENSICAEN - 1A Matériaux et Chimie FISE

TD2 – Variations de fonctions à plusieurs variables CORRIGE

Exercice 1. Intégration d'équations aux dérivées partielles

Soit f une fonction de deux variables et de classe C^2 .

(i)
$$\frac{\partial f}{\partial x} = 0$$
 admet comme solutions les fonctions telles que $f(x,y) = \varphi_1(y)$

(ii)
$$\frac{\partial^2 f}{\partial x^2} = 0$$
 soit $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = 0 = > \frac{\partial f}{\partial x} = \varphi_2(y)$ et $\frac{\partial^2 f}{\partial x^2} = 0$ admet comme solutions les fonctions telles que $f(x,y) = x$. $\varphi_2(y) + \psi_1(y)$

(iii)
$$\frac{\partial^2 f}{\partial x \partial y} = 0$$
 soit $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 0 = > \frac{\partial f}{\partial y} = \varphi_3(y)$ et $\frac{\partial^2 f}{\partial x \partial y} = 0$ admet comme solutions les fonctions telles que $f(x,y) = \varphi_4(y) + \psi_2(x)$ avec $\varphi'_4(y) = \varphi_3(y)$

Exercice 2. Règle de dérivation en chaîne

F une fonction de classe $C^2(\mathbb{R}^2, \mathbb{R})$. f(x) = F(3x+1, -x) = F(u(x), v(x)), u(x) = 3x + 1 et v(x) = -x

$$a) \ f'(x) = u'(x) \cdot \frac{\partial F}{\partial u}(u,v) + v'(x) \cdot \frac{\partial F}{\partial v}(u,v) = 3 \cdot \frac{\partial F}{\partial u}(u,v) + (-1) \cdot \frac{\partial F}{\partial v}(u,v)$$

$$b) \ f''(x) = u'(x) \cdot \frac{\partial}{\partial u} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) + v'(x) \cdot \frac{\partial}{\partial v} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) = 3 \cdot \frac{\partial}{\partial u} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) - \frac{\partial}{\partial v} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right)$$

$$f''(x) = 3 \cdot \frac{\partial}{\partial u} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) - \frac{\partial}{\partial v} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) = 9 \cdot \frac{\partial^2 F(u,v)}{\partial u^2} - 3 \cdot \frac{\partial^2 F(u,v)}{\partial u \partial v} - 3 \cdot \frac{\partial^2 F(u,v)}{\partial v \partial u} + \frac{\partial^2 F(u,v)}{\partial v^2} \text{ soit }$$

$$f''(x) = 3 \cdot \frac{\partial}{\partial u} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) - \frac{\partial}{\partial v} \left(3 \frac{\partial F}{\partial u} - \frac{\partial F}{\partial v} \right) = 9 \cdot \frac{\partial^2 F(u,v)}{\partial u^2} - 6 \cdot \frac{\partial^2 F(u,v)}{\partial u \partial v} + \frac{\partial^2 F(u,v)}{\partial v^2} \text{ car } \frac{\partial^2 F(u,v)}{\partial u \partial v} = \frac{\partial^2 F(u,v)}{\partial v \partial u}$$

$$d'après le théorème de Schwarz qui s'applique car F est de classe $C^2.$$$

Exercice 3. EDP résolue par changement linéaire de variables

f et F deux fonctions à valeurs réelles, de classe C 2 sur R 2 . f(x,y) = F(u,v), où u = U(x,y) = x + ayet v = V(x, y) = x + by, avec a et b des constantes réelles.

a) La matrice Jacobienne doit être inversible, son déterminant vaut b-a, il faut donc a ≠ b

$$\mathbf{b)} \frac{\partial f}{\partial x} = \frac{\partial F(u,v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F(u,v)}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial F(u,v)}{\partial u} + \frac{\partial F(u,v)}{\partial v} = \frac{\partial F}{\partial u} + \frac{\partial F}{\partial v}$$

$$\frac{\partial f}{\partial y} = \frac{\partial F(u,v)}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial F(u,v)}{\partial v} \frac{\partial v}{\partial y} = a \frac{\partial F(u,v)}{\partial u} + b \frac{\partial F(u,v)}{\partial v} = a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial u} + \frac{\partial F}{\partial v} \right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{\partial F}{\partial u} + \frac{\partial F}{\partial v} \right) \frac{\partial v}{\partial x} = \frac{\partial^2 F}{\partial u^2} + \frac{\partial^2 F}{\partial u \partial v} + \frac{\partial^2 F}{\partial v \partial u} + \frac{\partial^2 F}{\partial v^2}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial u} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) \frac{\partial u}{\partial y} + \frac{\partial}{\partial v} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) \frac{\partial v}{\partial y} = a \frac{\partial}{\partial u} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) + b \frac{\partial}{\partial v} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right)$$
 soit
$$\frac{\partial^2 f}{\partial y^2} = a^2 \frac{\partial^2 F}{\partial u^2} + ab \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \frac{\partial u}{\partial u} + b^2 \frac{\partial^2 F}{\partial v^2} = a^2 \frac{\partial^2 F}{\partial u^2} + 2ab \frac{\partial^2 F}{\partial u \partial v} + b^2 \frac{\partial^2 F}{\partial v^2}$$

$$\text{Et} \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial u} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) \frac{\partial v}{\partial x} = \frac{\partial}{\partial u} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right) + \frac{\partial}{\partial v} \left(a \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} \right)$$
 soit
$$\frac{\partial^2 f}{\partial x \partial y} = a \frac{\partial^2 F}{\partial u} + b \frac{\partial F}{\partial u} + b \frac{\partial F}{\partial v} + b \frac{\partial F}$$

c) $\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$ est équivalent à $(1-a)\frac{\partial F}{\partial y} + (1-b)\frac{\partial F}{\partial y} = 0$ soit en choisissant a=1 et b=-1, $2\frac{\partial F}{\partial y} = 0$ qui a pour solution $F(u, v) = \varphi(u)$. Et $f(x, y) = \varphi(x + y)$

d)
$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = 0$$
 est équivalent à $(1 - a^2) \frac{\partial^2 F}{\partial u^2} + 2(1 - ab) \frac{\partial^2 F}{\partial u \partial v} + (1 - b^2) \frac{\partial^2 F}{\partial v^2} = 0$. En choisissant a=1 et b=-1, on a donc $4 \frac{\partial^2 F}{\partial u \partial v} = 0$ ou $\frac{\partial^2 F}{\partial u \partial v} = 0$ qui a pour solution $F(u, v) = \varphi(u) + \psi(v)$.

Et
$$f(x, y) = \varphi(x + y) + \psi(x - y)$$

e) L'équation
$$\frac{\partial^2 f}{\partial x^2} - 2 \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0$$
 est équivalente à

$$(1+a^2-2a)\frac{\partial^2 F}{\partial u^2}+2(1+ab-a-b)\frac{\partial^2 F}{\partial u\partial v}+(1+b^2-2b)\frac{\partial^2 F}{\partial v^2}=0$$
 soit

$$(1-a)^2 \frac{\partial^2 F}{\partial u^2} + 2(1-a)(1-b)) \frac{\partial^2 F}{\partial u \partial v} + (1-b)^2 \frac{\partial^2 F}{\partial v^2} = 0.$$
 En prenant a=0 et b=1 (u=x et v=x+y), on a $\frac{\partial^2 F}{\partial u^2} = 0$ qui a pour solution $F(u,v) = u. \varphi(v) + \psi(v)$, et donc $f(x,y) = x. \varphi(x+y) + \psi(x+y)$

Exercice 4. EDP résolue par changement de variables

Soit f une fonction de deux variables x et y, de classe C^2 sur l'ouvert $U = \{(x,y) \in R^2 / x - y > 0\}$. On résoud $\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) + 7(x-y)f(x,y) = 0$

a) f(x,y) = g(u,v), où $u = x \cdot y$ et v = x + y, et q est une fonction de classe C^2 sur un ouvert.

$$\frac{\partial f}{\partial x} = \frac{\partial g(u,v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g(u,v)}{\partial v} \frac{\partial v}{\partial x} = y. \frac{\partial g(u,v)}{\partial u} + \frac{\partial g(u,v)}{\partial v} = y. \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$

$$\frac{\partial f}{\partial v} = \frac{\partial g(u,v)}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial g(u,v)}{\partial v} \frac{\partial v}{\partial v} = x \cdot \frac{\partial g(u,v)}{\partial u} + \frac{\partial g(u,v)}{\partial v} = x \cdot \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v} \frac{\partial g(u,v)}{\partial v} = x \cdot \frac{\partial g}{\partial v} + \frac{\partial g}{\partial v} \frac$$

$$\frac{\partial f}{\partial y} = \frac{\partial g(u,v)}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g(u,v)}{\partial v} \frac{\partial v}{\partial y} = x. \frac{\partial g(u,v)}{\partial u} + \frac{\partial g(u,v)}{\partial v} = x. \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$

$$\mathbf{b)} \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) + 7(x-y)f(x,y) = 0 \text{ est \'equivalent \'a}(y-x). \left[\frac{\partial g}{\partial u} - 7g(u,v)\right] = 0 \text{ soit }$$

$$\frac{\partial g}{\partial u} - 7g(u,v) = 0 \text{ ou } \frac{\partial g}{\partial u} = 7g(u,v)$$

c) $\frac{\partial g}{\partial u} = 7g(u,v)$ a pour solutions $g(u,v) = K(v) \cdot \exp(7u)$ et les solutions de l'EDP sont donc les fonctions f telles que $f(x, y) = K(x + y) \cdot \exp(7xy)$

Exercice 5. Recherche d'extremum, nature des points critiques

- 1) Soit la fonction f(x, y, z) de classe C^2 : $f(x, y, z) = (x 1)^2 + 3(y + 1)^2 + 2(y + 1)z + 3z^2$.
- a) Dérivées partielles premières de f sur R^3 : $\frac{\partial f}{\partial x} = 2(x-1)$, $\frac{\partial f}{\partial y} = 6(y+1) + 2z$, $\frac{\partial f}{\partial z} = 2(y+1) + 6z$. Le (ou les) point(s) critique(s) de f sont caractérisés par $\frac{\partial f}{\partial x} = 2(x-1) = 0$, $\frac{\partial f}{\partial y} = 6(y+1) + 2z = 0$ et $\frac{\partial f}{\partial z} = 2(y+1) + 6z = 0$. Il y a donc un seul point critique (x=1,y=-1,z=0).

b) On calcule les dérivées partielles secondes de f :

$$\frac{\partial^2 f}{\partial x^2} = 2, \frac{\partial^2 f}{\partial y^2} = 6, \frac{\partial^2 f}{\partial z^2} = 6, \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 0, \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x} = 0 \text{ et } \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y} = 2.$$

La matrice hessienne vaut donc $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 2 \\ 0 & 2 & 6 \end{pmatrix}$, les valeurs propres de cette matrice sont 2 (cf. 1ère colonne), 4 et 8 (trace=14, déterminant=64) qui sont toutes positives. Il s'agit d'un minimum local.

- **2)** Soit la fonction g(x,y) définie par : $g(x,y) = \cos(x) + \cos(y)$. Etude sur l'ouvert $[0, 2\pi]$ x $[0, 2\pi]$.
- a) Dérivées partielles premières de $g: \frac{\partial g}{\partial x} = -\sin(x), \frac{\partial g}{\partial y} = -\sin(y)$. Les points critiques de g sont caractérisés par $\frac{\partial g}{\partial x} = 0$ et $\frac{\partial g}{\partial y} = 0$. Il y a donc 4 points critiques (0,0), (0, π), (π ,0) et (π , π) (sur U).
- **b)** Les dérivées partielles secondes de g sont : $\frac{\partial^2 g}{\partial x^2} = -\cos(x)$, $\frac{\partial^2 g}{\partial y^2} = -\cos(y)$ et $\frac{\partial^2 g}{\partial x \partial y} = \frac{\partial^2 g}{\partial y \partial x} = 0$. La matrice hessienne est $H_g(x,y) = \begin{pmatrix} -\cos(x) & 0 \\ 0 & -\cos(y) \end{pmatrix}$, il s'agit d'une matrice diagonale.

En (0,0) $H_g(0,0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ => les valeurs propres sont toutes strictement négatives => maximum local pour (0,0).

En $(0, \pi)$, $H_g(0, \pi) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ et en $(\pi, 0)$, $H_g(\pi, 0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, les valeurs propres sont de signes opposés => ce sont des points-selles.

En (π, π) , $H_g(\pi, \pi) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ => les valeurs propres sont toutes strictement positives => minimum local pour (π, π) .