
EMBEDDED LINUX
Init process
Brief
Now that we know how U-Boot loads the Linux kernel, let's see which process is started first and
how we can change it.

Author
dimitri.boudier@ensicaen.fr
hugo.descoubes@ensicaen.fr

Summary
Analyze the first process and change it to a custom application.

Reminder
/!\ Understand all commands before running them! /!\

DEFAULT INIT PROCESS
Start the BBB, wait for Debian to be ready and log in. Look at the running processes.

What does the /proc directory contain? What does the ps command do? What is the first
process to be executed?

Default init application vector (symbolic link)

What is the /sbin/init file?

Display the main memory map of init process.

Those are the memory segments for the init process. What segments do you see?

ls /proc

ps -ef

stat /sbin/init

cat /proc/1/maps

af://n0
af://n2
mailto:dimitri.boudier@ensicaen.fr
mailto:hugo.descoubes@ensicaen.fr
af://n9

As no customisation has been performed yet (U-boot, Linux, Debian), the distribution starts with
the default init process. You can execute all the previous commands on a Ubuntu computer and
you will have the same results.

CREATE A STATIC APPLICATION
You will develop a static application, with no need of a distribution whatsoever. First, let's build the
application for your BBB but from your computer.

Make sure your CC environment variable is set: do you see your standard GCC or the Linaro GCC?.

Build three different executables from the very same C source file.

Execute each file, one at a time. They're echo programs, just try it.

Can you run each file?

Let's understand why you can't run the third one.

What does readelf -h do? What is an ELF file?

What are the main differences between those files? So, what can't you run the third one (for
now)?

${CC}gcc --version

cd ${DISCOPATH}/apps
cat hello.c

gcc hello.c -o hello_x64

gcc -static hello.c -o hello_static_x64
${CC}gcc -static hello.c -o hello_static_arm

./hello_x64

./hello_static_x64

./hello_static_arm

readelf -h hello_x64

readelf -h hello_static_x64

readelf -h hello_static_arm

af://n37

Finally, you have to know what is the -static option passed to GCC. Look at the files size.

Can this help you to suggest what is the -static option passed to GCC? Why is it necessary

for a BBB application?

Compiling a static application is usually not useful when using a Linux-based distribution. But
now we want to run a distro-less application. Why is building a static application necessary in
this case?

BBB APPLICATION WITH NO DISTRO
As we want to run a distribution-less application, we will remove the Debian filesystem from the
SD card.

Plug the SD card into your computer and erase the Debian filesystem in it.

Woopsie! By deleting the Debian filesystem, we also removed the kernel image and the device tree
binary. Let's restore them.

We also have to restore the uEnv.txt file. But first you will edit it so that the bootargs specify the
name of the application we want to be executed first.

before : optargs=init=/lib/systemd/systemd
now : optargs=init=/hello_static_arm

Now copy both the uEnv.txt file and the application into the SD card partition. Sync and

unmount.

ls -l

lsblk -f

sudo rm -rf ${MEDIA}/rootfs/

cd ${DISCOPATH}

export kernel_version=4.14.198-bone-rt-r40

sudo mkdir -p ${MEDIA}/rootfs/boot/
sudo cp -v ./deploy/zImage ${MEDIA}/rootfs/boot/vmlinuz-${kernel_version}

sudo cp -v ./deploy/am335x-boneblack.dtb ${MEDIA}/rootfs/boot/

nano ./misc/uEnv.txt

af://n81

Now boot the BBB and analyze the U-Boot and kernels output during the booting phase.

Which program is running? Is the shell running?

While keeping the power supply, remove the SD card from the BBB.

What kind of message do you see? What is sending those messages?

Is the application still running? Why's that?

BINGO - If you have a good understanding of this exercise ... you can now understand the
difference between a kernel (Operating System) such as Linux (XNU, Hurd, Minix, etc) and a
GNU\Linux distribution of services (applications and libraries) such as Ubuntu (Debian, Redhat,
Fedora, etc).

RESTORE PREVIOUS WORK
If you want to perform some tests with this configuration, go on.

But if you want to perform some other tests on the BBB or go to the next chapter, you must
deploy a full Debian distro onto the SD card. To do so, run your
disco/script/sdcard_deploy.sh .

sudo cp -v ./misc/uEnv.txt ${MEDIA}/rootfs/

sudo cp -v ./apps/hello_static_arm ${MEDIA}/rootfs/
sync

sudo umount ${MEDIA}/rootfs

af://n116

	EMBEDDED LINUX
	Init process
	DEFAULT INIT PROCESS
	CREATE A STATIC APPLICATION
	BBB APPLICATION WITH NO DISTRO
	RESTORE PREVIOUS WORK

