
EMBEDDED LINUX
Add DCAN driver support to the Linux
kernel

Brief
The CAN is not supported by our current Linux configuration. We'll edit the kernel .config file in

order to enable the CAN driver support as a built-in service, following the Texas Instruments
documentation. We'll then deploy the new kernel image onto the SD card to validate this step.

Author
dimitri.boudier@ensicaen.fr
hugo.descoubes@ensicaen.fr

Resources
Processor SDK Linux Software Developer’s Guide

Reminder
/!\ Understand all commands before running them! /!\

KERNEL CONFIGURATION FOR SUPPORTING THE
DCAN DRIVER

In this section, you will edit the kernel configuration so that Linux contains support for the DCAN
driver for the AM335x processor.
Prior to doing anything, let's save the original .config file, i.e. the one we've been using from the
beginning.

The TI documentation provides information about how to configure the kernel in order to make
the DCAN driver functionnal for the AM335x processor : Processor SDK Linux Software
Developer’s Guide.

In section 3.2.1.4. Configuring the Kernel it is suggested to start with a default configuration.

Let's use the defconfig file, which is supplied by Robert C. Nelson, and see the default

configuration lines for the CAN device.

Write this below.

cd ${DISCOPATH}/kernel/bb-kernel/KERNEL

cp .config ../patches/.config_original

cp ../patches/defconfig .config
cat .config | grep 'CAN'

af://n0
af://n2
mailto:dimitri.boudier@ensicaen.fr
mailto:hugo.descoubes@ensicaen.fr
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/devices/AM335X/linux/index.html
af://n9
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/devices/AM335X/linux/index.html

Now browse the documentation and find the page dedicated to the DCAN kernel driver (3.2.4.4.

DCAN). (Note: if the page is unreachable, a backup PDF is to be found in disco/docs). Then you
should find the Detailed Kernel Configuration section.

You can copy-paste here the required configuration.

Apply the required configuration on the .config file. Note that we will configure all required

services as built-in (and not as modules). Don't forget to save afterwards.

Verify new .config file configuration and see applied changes.

Note the differences with the original .config file.

Save the .config file that now contains CAN support.

BUILD KERNEL WITH NEW BUILT-IN SERVICES
In the chapter 3.2.1. Users Guide of its documentation, TI gives the steps needed for the kernel

image compilation. It is suggested to start by cleaning the kernel sources.

Look at the make help menu.

What will make ARCH=arm distclean do?

See old generated files (.config , .dtb and zImage).

Before rebuilding the whole kernel image, we clean thekernel file system.

make ARCH=arm menuconfig

grep 'CAN' .config

cp .config ../patches/.config_can

make ARCH=arm help

ls -la

ls arch/arm/boot/dts | grep .dtb
ls -l arch/arm/boot

af://n42

Verify after cleaning

Which files have disappeared?

See, we deleted the .config file we just generated. Hopefully we made a backup! Let's bring it

back.

Now we can build a new kernel image, which will contain DCAN support.

Note that the -j16 option does not appear in the TI documentation. What's its effect?

Wait until the build is complete (it should takes few minutes). The last line of the building feed
shows the Linux image file location:

Kernel: arch/arm/boot/zImage is ready

Copy this image to our deploy directory.

The new kernel image with CAN support is now ready to be deployed.

DEPLOY NEW KERNEL
You will now deploy the new kernel image. Make sure you have a full Debian distribution on your
SD card before going on. Otherwise run your sdcard_deploy.sh script.

Deploy the kernel image onto the SD card.

make ARCH=arm distclean

ls -la
ls arch/arm/boot/dts | grep .dtb

ls -l arch/arm/boot

cp ../patches/.config_can .config

make ARCH=arm CROSS_COMPILE=${CC} zImage -j16

cp arch/arm/boot/zImage ${DISCOPATH}/deploy/zImage_can

af://n83

Start the BeagleBone Black, log in and verify that the CAN driver is now supported by the kernel.

root@arm:~# dmesg | grep 'CAN|can:'
[1.227598] CAN device driver interface
[1.622052] can: controller area network core (rev 20170425 abi 9)
[1.632835] can: raw protocol (rev 20170425)
[1.637129] can: broadcast manager protocol (rev 20170425 t)
[1.642827] can: netlink gateway (rev 20170425) max_hops=1

What does dmesg do? What's the meaning of the output just above?

Like Ethernet and Wi-Fi, the CAN protocol is usually recognised as a network by Linux. Verify that
the CAN network is supported by the kernel.

Which interfaces do you see? Is the CAN interface visible?

As it stands, the Linux kernel integrates the driver but cannot use it as network. We will see how to
change that on the next chapter using Device Tree support!

cd ${DISCOPATH}/deploy

sudo cp -v ./zImage_can ${MEDIA}/rootfs/boot/vmlinuz-${kernel_version}
sync

sudo umount ${MEDIA}/rootfs

dmesg | grep 'CAN\|can:'

ifconfig -a

	EMBEDDED LINUX
	Add DCAN driver support to the Linux kernel
	KERNEL CONFIGURATION FOR SUPPORTING THE DCAN DRIVER
	BUILD KERNEL WITH NEW BUILT-IN SERVICES
	DEPLOY NEW KERNEL

