
L’École des INGÉNIEURS Scientifiques

André Lépine, Enseignement Linux Embarqué, 4 Décembre 2022

Linux Device Driver

December 4, 2022 LDD / EnsiCaen - 2

OPEN SOURCE SOFTWARE

Open Source Software is
computer software whose
source code is available
under a license (or
arrangement such as the
public domain) that permits
users to use, change, and
improve the software, and
to redistribute it in
modified or unmodified
form.

(Source: Wikipedia)

December 4, 2022 LDD / EnsiCaen - 3

REFERENCES

▪ “Linux Device Driver, 3rd Edition”

▪ Jonathan Corbet, Alessandro, Rubini, and Greg Kroah-Hartman [O’Reilly]

▪ The kernel itself

▪ /Documentations

▪ The Linux Kernel documentation — The Linux Kernel documentation
https://docs.kernel.org/index.html

▪ “The C programming language”

▪ Kernighan and Ritchie [Prentice Hall]

https://docs.kernel.org/index.html

ZOOM INTO THE LINUX KERNEL

▪ The Linux® kernel is the main component of a Linux
operating system (OS) and is the core interface between a
computer’s hardware and its processes. It communicates
between the 2, managing resources as efficiently as possible.

▪ The kernel is so named because—like a seed inside a hard
shell—it exists within the OS and controls all the major
functions of the hardware, whether it’s a phone, laptop,
server, or any other kind of computer

DISTRIBUTIONS AND REAL WORLD

December 4, 2022 LDD / EnsiCaen - 5

SYSTEM VIEW

December 4, 2022 LDD / EnsiCaen - 6

▪ Programming a KLM is more complex than developing in user land.

▪ " Débogage dans l’espace noyau avec KGDB “ magazine LM 88

▪ The whole system relies on the Kernel. Bad programming might impact some critical items and

hang the system.

▪ The glibc library does not exist in the kernel, but some functions are implemented in the lib

directory of the kernel sources.

▪ A KLM is programmed in C, but the KLM structure is object oriented.

▪ Coding style is written in the Documentation/CodingStyle directory of the Kernel sources.

▪ A KLM shall support all architectures, namely regarding the endian-ness.

THE KERNEL RULES

December 4, 2022 LDD / EnsiCaen - 7

December 4, 2022 LDD / EnsiCaen - 8

ARCHITECTURE OF THE GNU/LINUX OPERATING SYSTEM

LINUX DEVICE DRIVER

▪ Introduction

December 4, 2022 LDD / EnsiCaen - 10

AUDIENCE

▪ People who want to become kernel hackers but don’t know where to start. Give an interesting

overview of the kernel implementation as well.

▪ Understanding the kernel internals and some of the design choices made by the Linux

developers and how to write device drivers,

▪ Start playing with the code base and should be able to join the group of developers. Linux is

still a work in progress, and there’s always a place for new programmers to jump into the

game.

▪ You may just skip the most technical sections, and stick to the standard API used by device

drivers to seamlessly integrate with the rest of the kernel.

ROLE OF A DEVICE DRIVER

▪ Flexibility

▪ “what capabilities are to be provided” (the mechanism)

▪ “how those capabilities can be used” (the policy)

▪ The two issues are addressed by different parts of the program, or even by different programs altogether,

the software package is much easier to develop and to adapt to particular needs.

▪ The driver should deal with making the hardware available, leaving all the issues about how to

use the hardware to the applications.

▪ Loadable module

▪ Ability to extend at runtime the set of features offered by the kernel.

▪ Each module is made up of object code (not linked into a complete executable) that can be

dynamically linked to the running kernel by the insmod program and can be unlinked by the rmmod

program.

December 4, 2022 LDD / EnsiCaen - 11

3 DEVICE DRIVER CLASSES

▪ char module : stream of bytes

▪ open, close, read, and write system calls.

▪ dev/console, /dev/tty

▪ block module

▪ Host a file system (like a disk)

▪ handle I/O operations that transfer whole blocks (512 usually)

▪ data is managed internally by the kernel

▪ network module

▪ exchange data with other hosts, usually some hardware device

▪ the kernel calls functions related to packet transmission in charge of sending and receiving data
packets, driven by the network subsystem of the kernel, without knowing how individual transactions
map to the actual packets being transmitted.

December 4, 2022 LDD / EnsiCaen - 12

▪ Some types of drivers work with additional layers of kernel support functions for a given type of
device.

▪ Examples:

▪ Every USB device is driven by a USB module that works with the USB subsystem, but the device itself shows
up in the system as

▪ a char device (a USB serial port, say),

▪ a block device (a USB memory card reader),

▪ or a network device (a USB Ethernet interface).

▪ The file system type is a software driver, because it maps the low-level data structures to high-level data
structures.

▪ Independent of the data transfer to and from the disk, which is accomplished by a block device driver.

▪ Kernel developers collected class-wide features and exported them to driver implementers to avoid
duplicating work and bugs, thus simplifying and strengthening the process of writing such drivers.

MODULARIZATION OF THE KERNEL

December 4, 2022 LDD / EnsiCaen - 13

SECURITY ISSUE

▪ Only the super-user can load module

▪ System call init_module checks if the invoking process is authorized to load a module into the kernel

▪ Security is a policy issue handled at higher levels within the kernel, under the control of the system

administrator

▪ Exception

▪ Critical resources access privilege shall be checked by the driver

▪ /!\ Security bug

▪ “memory overflow”: protect buffer handling !

▪ No leakage permitted: memory obtained from the kernel should be zeroed or otherwise be initialized

before being made available to a user device

▪ Do not run kernels compiled by an untrusted friend.

December 4, 2022 LDD / EnsiCaen - 14

VERSION NUMBERING

▪ Check the kernel version and interdependencies

▪ you need a particular version of one package to run a particular version of another package.

▪ file Documentation/Changes in your kernel sources is the best source of such information if you

experience any problems

▪ The even-numbered kernel versions (i.e., 2.6.x) are the stable ones that are intended for

general distribution

▪ Check http://lwn.net/Articles/2.6-kernel-api/ for Kernel API update

December 4, 2022 LDD / EnsiCaen - 15

http://lwn.net/Articles/2.6-kernel-api/

JOINING THE KERNEL DEVELOPMENT COMMUNITY

▪ Larger community of developers

▪ Highly committed engineers working toward making Linux better

▪ source of help, ideas, and critical review as well

▪ first people you will likely turn to when looking for testers for a new driver

▪ linux-kernel mailing list, including Linus Torvalds

▪ FAQ: http://www.tux.org/lkml

▪ Linux kernel developers are busy people, and they are much more inclined to
help people who have clearly done their homework first.

December 4, 2022 LDD / EnsiCaen - 16

http://www.tux.org/lkml

MODULE

- build and run a complete module

- basic code shared by all modules

“Developing such expertise is an essential foundation for any

kind of modularized driver”

December 4, 2022 LDD / EnsiCaen - 18

HELLO WORD MODULE

#include <linux/init.h>
#include <linux/module.h>

MODULE_LICENSE("GPLV2");

static int hello_init(void)
{

printk(KERN_ALERT "Hello, world\n");
return 0;

}
static void hello_exit(void)
{

printk(KERN_ALERT "Goodbye, cruel world\n");
}
module_init(hello_init);
module_exit(hello_exit);

LOAD/UNLOAD A MODULE

December 4, 2022 19LDD / EnsiCaen -

% make
make[1]: Entering directory `/usr/src/linux-2.6.10'
CC [M] /home/ldd3/src/misc-modules/hello.o
Building modules, stage 2.
MODPOST
CC /home/ldd3/src/misc-modules/hello.mod.o
LD [M] /home/ldd3/src/misc-modules/hello.ko
make[1]: Leaving directory `/usr/src/linux-2.6.10'
% sudo insmod ./hello.ko
% sudo rmmod hello
% dmesg –T
…

[13-03-2022 6pm11] Hello, world
[13-03-2022 6pm11] Goodbye cruel world

December 4, 2022 LDD / EnsiCaen - 20

COMPILATION

▪ Gcc from project GNU

▪ See Documentation/kbuild directory in the kernel sources

% cat makefile

obj-m := myKLM.o

myKLM-objs := mySourceFile1.o mySourceFile2.o

all:

make -C /lib/modules/3.5.0-17-generic/build M=`pwd` modules

clean:

make -C /lib/modules/3.5.0-17-generic/build M=`pwd` clean

% gcc -C /lib/modules/5.11.0-37-generic/build M=`pwd` modules

▪ Event driven programming

▪ The exit must carefully undo everything the init built up, or the pieces remain around until the

system is rebooted

▪ Cost down development time: test successive version without rebooting the system each time

▪ A module is linked only to the kernel, and the only functions it can call are the ones exported

by the kernel; there are no libraries to link to

▪ No debugger. A kernel fault kills the current process at least, if not the whole system

MODULARIZATION

December 4, 2022 21LDD / EnsiCaen -

December 4, 2022 LDD / EnsiCaen - 22

LINKING A MODULE TO THE KERNEL

December 4, 2022 LDD / EnsiCaen - 23

USER SPACE AND KERNEL SPACE

▪ Module runs in kernel space, whereas applications run in user space

▪ The kernel executes in the highest level (also called supervisor mode), whereas applications

execute in the lowest level (the so-called user mode), where the processor regulates direct

access to hardware and unauthorized access to memory

▪ Different memory mapping and different address space

▪ Kernel code executing a system call is working in the context of a process and is able to access

data in the process’s address space

▪ Code that handles interrupts is asynchronous and not related to any process.

December 4, 2022 LDD / EnsiCaen - 24

CONCURRENCY IN THE KERNEL

▪ Several processes can be trying to use your driver at the same time

▪ Interrupt handlers run asynchronously and can be invoked at the same time that your driver is

trying to do something else

▪ Linux can run on symmetric multiprocessor systems, with the result that your driver could be

executing concurrently on more than one CPU

▪ 2.6, kernel code has been made preemptible

▪ Kernel code, including driver code, must be reentrant—it must be capable of running in more

than one context at the same time

▪ Data structures must be carefully designed to keep multiple threads of execution separate, and the

code must take care to access shared data in ways that prevent corruption of the data

December 4, 2022 LDD / EnsiCaen - 25

THE CURRENT PROCESS

▪ The kernel has a very small stack; as small as a single, 4096-byte page

▪ Large structures should be allocated dynamically at call time

▪ Function names starting with a double underscore (_ _) are low-level
components and should be used with caution.

<linux/sched.h>

printk(KERN_INFO "The process is \"%s\" (pid %i)\n",
current->comm, current->pid);

Kernel stack is not large

Double underscore

December 4, 2022 LDD / EnsiCaen - 26

PLATFORM DEPENDENCY

▪ Kernel code can be optimized for a specific processor in a CPU family to get the best from the

target platform

▪ Modern processors have introduced new capabilities:

▪ Faster instructions for entering the kernel,

▪ Interprocessor locking,

▪ Copying data,

▪ 36-bit addresses to address more than 4 GB of physical memory

▪ How to deliver module code

▪ Distribute driver with source and scripts to compile it on the user’s system

▪ Release under a GPL-compatible license, contribute to the mainline kernel

December 4, 2022 LDD / EnsiCaen - 27

THE KERNEL SYMBOL TABLE

▪ When a module is loaded, any symbol exported by the module becomes part of the kernel
symbol table

▪ New modules can use symbols exported and can be stack on top

▪ New abstraction is implemented in the form of a device driver

▪ It offers a plug for hardware-specific implementations

▪ The _GPL version makes the symbol available to GPL-licensed modules only.

▪ See <linux/module.h>

EXPORT_SYMBOL(name);
EXPORT_SYMBOL_GPL(name);

December 4, 2022 LDD / EnsiCaen - 28

ERROR HANDLING DURING INITIALIZATION

int __init myInitFunction(void)
{

int err;

/* registration takes a pointer and a name */
err = registerSomeKernelObjectX(ptr1, …);

if (err) goto fail_this;
err = registerSomeKernelObjectY(ptr2, …);

if (err) goto fail_that;

return 0; /* success */

fail_that: unregisterSomeKernelObjectX(ptr1, …);

fail_this: return err; /* propagate the error */
}

December 4, 2022 LDD / EnsiCaen - 29

CLEANUP

void __exit my_cleanup_function(void)
{

unregisterSomeKernelObjectZ(ptr3, "skull");
unregisterSomeKernelObjectY(ptr2, "skull");
unregisterSomeKernelObjectX(ptr1, "skull");
return;

}

▪ Values supplied during the module initialization

▪ Values supplied as a comma-separated list

MODULE PARAMETERS

December 4, 2022 LDD / EnsiCaen - 30

% insmod myModule fruit=“banana” quantity=10

static char *param_fruit = “orange";

static int param_quantity = 1;
module_param_named(fruit, param_fruit, char*, S_IRUGO);
MODULE_PARM_DESC(fruit, “Healthy desert");

module_param_named(quantity, param_quantity, int, S_IRUGO);
MODULE_PARM_DESC(quantity, “Quantity of fruit");

CHAR DEVICE

- suitable for most simple hardware devices

- easier to understand than block or network drivers

- aim is to write a modularized char driver

ACCESSING CHAR DRIVERS FROM USER LAND

December 4, 2022 LDD / EnsiCaen - 32

>ll –s /dev

brw-rw---- 1 root disk 7, 6 2008-09-11 21:10 loop6
brw-rw---- 1 root disk 7, 7 2008-09-11 21:10 loop7
crw-rw---- 1 root lp 6, 0 2008-09-11 21:10 lp0
crw-r----- 1 root kmem 1, 1 2008-09-11 21:08 mem
crw-rw-rw- 1 root root 1, 3 2008-07-21 13:13 null

“c” - Character mode driver

Permissions settings

Owner and Group

MAJOR and MINOR device number

The scheme for the numbers can be seen in /proc/devices

OVERVIEW

December 4, 2022 LDD / EnsiCaen - 33

USER

KERNEL

inode

dev_t

fops

cdev

/dev/file

open,

read,

write,

close

"name"

/proc/devices

write

read

open

mknod

MAJOR

MINOR

cdev_add

cdev_init

alloc_chrdev_region

INSTALLING A DEVICE NODE

December 4, 2022 LDD / EnsiCaen - 34

Two parts operation:

1- LKM must register itself to have a specific major and minor device

number pair

2- A top level administrator or script must create a node that connects

the major/minor device number pair to a file system object within /dev

Linux provides utility for “system admin” or “system start-up” to create

“nodes” with the file system

/* statically */
int register_chrdev_region(dev_t myDev, unsigned int count, char *name;
/* dynamically */
int alloc_chrdev_region(dev_t *pmyDev, unsigned int firstminor, unsigned
int count, char *name);
/* helper */
MKDEV(major, minor), MAJOR(Device), MINOR(Device)

> mknod /dev/devicename c MAJOR MINOR

REMOVING A DEVICE NODE

December 4, 2022 LDD / EnsiCaen - 35

unregister_chrdev_region(dev_t myDev, unsigned int count);

Caution

Return 0 for success; negative is error

Generally, bail out of module on error

Clean all resources already allocated before leaving

Registering and unregistering ONE device per module

ADMINISTRATION – INSTALLATION SCRIPT

December 4, 2022 LDD / EnsiCaen - 36

module="EnsiCaen_ldd"
device="EnsiCaen_device“

install the LKM and exit if insmod fails with an error
sudo insmod $module.ko verbose=1

query the /proc/devices file
major=$(awk "\$2==\"$module\" {print \$1}" /proc/devices)
minor=0

create the new file system node
sudo mknod /dev/$device c $major $minor

ensure device file is readable by all
sudo chmod 644 /dev/$device

ADMINISTRATION – CLEAN UP SCRIPT

December 4, 2022 LDD / EnsiCaen - 37

module="EnsiCaen_ldd"
device="EnsiCaen_device“

sudo rmmod $module
sudo rm -f /dev/$device

FILE OPERATIONS

December 4, 2022 LDD / EnsiCaen - 38

Drivers for most operating systems will require the implementation of

a table of entry points

Linux uses a special kernel structure, called struct file_operations,

to supply these entry points

Structure is defined within the linux/fs.h header file

static struct file_operations my_module_fops = {
owner: THIS_MODULE,
open: my_module_open,
read: my_module_read,
release: my_module_release

};

KERNEL STRUCTURES TO SUPPORT FILE OPERATIONS

December 4, 2022 LDD / EnsiCaen - 39

The file operations structure must be registered with the Linux

operating system using a struct cdev

// init & register character driver's file operations
cdev_init (&myCDev, &myFops);
my_module_cdev.owner = THIS_MODULE;
my_module_cdev.ops = &myFops;
rc = cdev_add (&myCDev, myDev, 1);
if (rc) {

printk(KERN_INFO “my_module: unable to add

cdev struct.\n");
return rc;

} /* endif */

cdev_del (&myCDev);
unregister_chrdev_region (myDev, 1);

Init

method

Exit

method

FILE OPERATION – EXAMPLE

December 4, 2022 LDD / EnsiCaen - 40

int my_module_open (struct inode *pInode, struct file *fp)
{

if (my_module_is_open) {
return -EBUSY;

} /* endif */
my_module_is_open++;

…

int my_module_release (struct inode *pInode, struct file *fp)
{

// indicate that future calls to open() will succeed
my_module_is_open --;
printk (KERN_INFO “my_module: my_module_release ... \n");

} /* end my_module _release */

▪ Making it accessible to userspace application by creating a device node:

mknod /dev/demo c 202 128

▪ Using normal the normal le API :

DRIVER USAGE IN USERSPACE

December 4, 2022 LDD / EnsiCaen - 41

fd = open("/dev/demo", O_RDWR);
ret = read(fd, buf, bufsize);
ret = write(fd, buf, bufsize);

insmod mydriver3.ko
echo -n salut > /dev/mydriver3
mydriver3: wrote 5/5 chars salut
$ cat /dev/mydriver3
salut

THE ARGUMENTS TO READ

December 4, 2022 LDD / EnsiCaen - 42

FILE OPERATION – EXAMPLE

December 4, 2022 LDD / EnsiCaen - 43

unsigned long copy_to_user(void __user *to, const void *from,
unsigned long n);
unsigned long copy_from_user(void *to, const void __user *from,
unsigned long n);
put_user (variable, ptr);
get_user (variable, ptr);

int my_module_read (struct file *fp, char __user *buffer,
size_t len, loff_t *offset)

{
available = LOCAL_BUF_SIZE - *offset;
if (len > available) len = available;
copy_to_user (buffer, LOCAL_BUF_ADD + *offset, len);
*offset += len;
return len;

}

Size of some

driver internal

buffer

@ of some

driver internal

buffer

KERNEL FRAMEWORK

Factorization

Coherent interface

Efficiency

Specialization

▪ Most device drivers are not directly implemented as character devices or block devices

▪ They are implemented under a framework, specic to a device type (framebuer, V4L, serial, etc.)

▪ The framework allows to factorize the common parts of drivers for the same type of devices

▪ From userspace, they are still seen as normal character devices

▪ The framework allows to provide a coherent userspace interface (ioctl numbering and semantic, etc.)

for every type of device, regardless of the driver

FRAMEWORK AND DRIVERS

December 4, 2022 LDD / EnsiCaen - 45

EXAMPLE OF FRAMEWORK

December 4, 2022 LDD / EnsiCaen - 46

Object

Provider

Object

Consumer

Allocate

&

Register

▪ Kernel option CONFIG FB

▪ Implemented in drivers/video/

▪ fb.c, fbmem.c, fbmon.c, fbcmap.c, fbsysfs.c,
modedb.c, fbcvt.c

▪ Implements a single character driver
(through file operations), registers the major number and allocates minors, defines and
implements the user/kernel API

▪ First part of include/linux/fb.h

▪ Defines the set of operations a framebuffer driver must implement and helper functions for
the drivers

▪ struct fb ops

▪ Second part of include/linux/fb.h

EXAMPLE OF THE FRAMEBUFFER

December 4, 2022 LDD / EnsiCaen - 47

FRAMEBUFFER SKELETON EXAMPLE

December 4, 2022 LDD / EnsiCaen - 48

FOPS

Alloc

Register

▪ One of the features that came with the 2.6 kernel is a unified device and driver model

▪ Instead of different ad-hoc mechanisms in each subsystem, the device model unifies the vision

of the devices, drivers, their organization and relationships

▪ Allows to minimize code duplication, provide common facilities, more coherency in the code

organization

▪ Base structure types: struct device, struct driver, struct bus_type

▪ Is visible in userspace through the sysfs filesystem, traditionally mounted under /sys

DEVICE AND DRIVER MODEL

December 4, 2022 LDD / EnsiCaen - 49

▪ Core element of the device model

▪ A single bus driver for each type of bus: USB, PCI, SPI, MMC, I2C, etc.

▪ This driver is responsible for:

▪ Registering the bus type (bus type structure)

▪ Allow the registration of adapter/interface drivers (USB controllers, I2C controllers, SPI controllers).

These are the hardware devices capable of detecting and providing access to the devices connected

to the bus

▪ Allow the registration of device drivers (USB devices, I2C devices, SPI devices). These are the

hardware devices connected to the different buses.

▪ Matching the device drivers against the detected devices

BUS DRIVER

December 4, 2022 LDD / EnsiCaen - 50

BUS

device#1 device#2 device#3

ADAPTER, BUS AND DEVICE DRIVERS

December 4, 2022 LDD / EnsiCaen - 51

Detection

& Access

Registration of

HW devices

▪ The core “devices”
tree shows how the
mouse is connected
to the system

▪ The “bus” tree tracks
what is connected to
each bus

▪ The under “classes”
concerns itself with
the functions
provided by the
devices, regardless
of how they are
connected.

BUSES, DEVICES, AND DRIVERS

December 4, 2022 LDD / EnsiCaen - 52

CONCURRENCY AND RACE
CONDITIONS

- system tries to do more than one thing at once

- concurrency-related bugs are some of the

easiest to create and some of the hardest to find

▪ In the Linux world, the P/V functions are called down/up

UP AND DOWN

December 4, 2022 LDD / EnsiCaen - 54

/* create unkillable processes */
void down(struct semaphore *sem);

/* allow the user-space process that is waiting on a
* semaphore to be interrupted by the user */

int down_interruptible(struct semaphore *sem);

/* if the semaphore is not available at the time
* of the call,down_trylock returns immediately
* with a nonzero return value */

int down_trylock(struct semaphore *sem);

void up(struct semaphore *sem);

▪ Semaphore for multi-instance resources sharing

▪ Mutex for single exclusive resource sharing

LINUX SEMAPHORE IMPLEMENTATION

December 4, 2022 LDD / EnsiCaen - 55

/* with value */
void sema_init(struct semaphore *sem, int val);

/* concurency only */
DECLARE_MUTEX(name); /* mutex is sema to 1 */
DECLARE_MUTEX_LOCKED(name); /* already to 0 */

/* dynamically */
void init_MUTEX(struct semaphore *sem);
void init_MUTEX_LOCKED(struct semaphore *sem);

▪ It is often possible to allow multiple concurrent readers, as long as nobody is trying to make

any changes

READER/WRITER SEMAPHORES

December 4, 2022 LDD / EnsiCaen - 56

void init_rwsem(struct rw_semaphore *sem);

void down_read(struct rw_semaphore *sem);
int down_read_trylock(struct rw_semaphore *sem);
void up_read(struct rw_semaphore *sem);

void down_write(struct rw_semaphore *sem);
int down_write_trylock(struct rw_semaphore *sem);
void up_write(struct rw_semaphore *sem);
/* for long read period */
void downgrade_write(struct rw_semaphore *sem);

▪ Any process trying to read from the device will wait until some other process writes to the

device.

COMPLETION

December 4, 2022 LDD / EnsiCaen - 57

DECLARE_COMPLETION(comp);
ssize_t complete_read (struct file *filp, char __user *buf, ...)
{

printk(KERN "process %i going to sleep\n", current->pid);
wait_for_completion(&comp);
return 0; /* EOF */

}
ssize_t complete_write (struct file *filp, const char __user
*buf, ...)
{

printk(KERN "process %i awakening...\n", current->pid);
complete(&comp);
return count; /* succeed, to avoid retrial */

}

▪ A spinlock is a mutual exclusion device that can have only two values: “locked” and “unlocked.”

▪ If the lock has been taken by somebody else, the code goes into a tight loop where it

repeatedly checks the lock until it becomes available. This loop is the “spin” part of a spinlock.

▪ Intended for use on multiprocessor systems

SPINLOCKS

December 4, 2022 LDD / EnsiCaen - 58

void spin_lock(spinlock_t *lock);

/* For ISR: disable interrupt, the interrupt state is stored in flags */
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
/* enable back the IRQ when the spin is released /!\ if allowed */
void spin_lock_irq(spinlock_t *lock);

/* For tasklet: disables software interrupts before taking the lock, but
leaves hardware interrupts enabled. */
void spin_lock_bh(spinlock_t *lock)

▪ Sometimes, a shared resource is a simple integer value

▪ Even a simple operation such as requires locking

▪ An atomic_t holds an int value on all supported architectures. Because of the way this type

works on some processors, however, the full integer range may not be available; thus, you

should not count on an atomic_t holding more than 24 bits.

ATOMIC VARIABLES

December 4, 2022 LDD / EnsiCaen - 59

N_op++;

atomic_t v = ATOMIC_INIT(0);
void atomic_set(atomic_t *v, int i);
int atomic_read(atomic_t *v);
void atomic_add/sub(int i, atomic_t *v);
void atomic_inc/dec(atomic_t *v);
int atomic_inc/dec/sub_and_test(atomic_t *v); /* check is null */
int atomic_sub_and_test(int in, atomic_t *v); /* check is null */
int atomic_add_negative(int i, atomic_t *v);
int atomic_add/sub_return(int i, atomic_t *v);
int atomic_inc/dec_return(atomic_t *v);

▪ Manipulating individual bits in an atomic manner

▪ CPU optimized with assembly implementation

BIT OPERATIONS

December 4, 2022 LDD / EnsiCaen - 60

void set/clear/change_bit(nr, void *addr);
test_bit(nr, void *addr);
int test_and_set/clear/change_bit(nr, void *addr);

ADVANCED CHAR DRIVER OPERATIONS

Sleeping & wait queue

TASK STATUS AND QUEUE

December 4, 2022 LDD / EnsiCaen - 62

December 4, 2022 LDD / EnsiCaen - 63

WAIT QUEUE

▪ Never sleep when you are running in an atomic context, if you have disabled interrupts.

▪ Check that holding a semaphore does not block the process that will eventually wake you up.

▪ After wake up you can make no assumptions about the state of the system after you wake up,

and you must check to ensure that the condition you were waiting for is, indeed, true.

▪ A wait queue is like a list of processes, all waiting for a specific event.

Statical declaration:

DECLARE_WAIT_QUEUE_HEAD(name);
Dynamic declaration:

wait_queue_head_t my_queue;
init_waitqueue_head(&my_queue);

December 4, 2022 LDD / EnsiCaen - 64

WAIT QUEUE

▪ Sleep

▪ Wake up

▪ Rational example

▪ If a process calls read but no data is (yet) available or if a process calls write and there is no space in the buffer, the
process must block.

▪ Extra : wake_up_nr, wake_up_all, wake_up_sync (+interruptible)

SIMPLE SLEEPING

December 4, 2022 LDD / EnsiCaen - 65

wait_event(queue, condition)
wait_event_interruptible(queue, condition)
wait_event_timeout(queue, condition, timeout)
wait_event_interruptible_timeout(queue, condition, timeout)

void wake_up(wait_queue_head_t *queue);
void wake_up_interruptible(wait_queue_head_t *queue);

SLEEPING EXAMPLE

December 4, 2022 LDD / EnsiCaen - 66

static DECLARE_WAIT_QUEUE_HEAD(wq);
static int flag = 0;
ssize_t sleepy_read (struct file *filp, char __user *buf,

size_t count, loff_t *pos)
{

wait_event_interruptible(wq, flag != 0);
flag = 0;
return 0; /* EOF */

}
ssize_t sleepy_write (struct file *filp, const char __user *buf,

size_t count,loff_t *pos)
{

flag = 1;
wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */

}

TIME, DELAYS,
AND
DEFERRED WORK

• Measuring time lapses and comparing times

• Knowing the current time

• Delaying operation for a specified amount of time

• Scheduling asynchronous functions

▪ On 32-bit platforms the counter wraps around only once every 50 days, your code should be

prepared to face that event.

COMPARING TIME

December 4, 2022 LDD / EnsiCaen - 68

#include <linux/jiffies.h>
unsigned long j, stamp_1, stamp_half, stamp_n;
j = jiffies; /* read the current value */
stamp_1 = j + HZ; /* 1 second in the future */
stamp_half = j + HZ/2; /* half a second */
stamp_n = j + n * HZ / 1000; /* n milliseconds */
u64 get_jiffies_64(void);

int time_after(unsigned long a, unsigned long b);
int time_before(unsigned long a, unsigned long b);
int time_after_eq(unsigned long a, unsigned long b);
int time_before_eq(unsigned long a, unsigned long b);

▪ Time of the day

▪ Format conversion

GETTING TIME

December 4, 2022 LDD / EnsiCaen - 69

unsigned long timespec_to_jiffies(struct timespec *value);
void jiffies_to_timespec(unsigned long jiffies,

struct timespec *value);
unsigned long timeval_to_jiffies(struct timeval *value);
void jiffies_to_timeval(unsigned long jiffies,

struct timeval *value);

unsigned long mktime (unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec);

void do_gettimeofday(struct timeval *tv);

▪ All not always implemented depending on platform

▪ Busy waiting

▪ Putting the calling process in sleep for a given number of milliseconds

SHORT DELAYS

December 4, 2022 LDD / EnsiCaen - 70

#include <linux/delay.h>
void ndelay(unsigned long nsecs);
void udelay(unsigned long usecs);
void mdelay(unsigned long msecs);

void msleep(unsigned int millisecs);
unsigned long msleep_interruptible(unsigned int millisecs);
void ssleep(unsigned int seconds)

▪ Informing the processor is hardly unused : not blocking but the hugly

▪ Requesting the kernel to reallocate CPU, but still polling

▪ Cheating with the event queuing

▪ The process will no more be running

LONG DELAY

December 4, 2022 LDD / EnsiCaen - 71

set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout (delay);

wait_queue_head_t wait;
init_waitqueue_head (&wait);
wait_event_interruptible_timeout(wait, 0, delay);

while (time_before(jiffies, j1)) schedule();

while (time_before(jiffies, j1)) cpu_relax();

▪ Whenever you need to schedule an action to happen later, without blocking the current

process until that time arrives, kernel timers are the tool for you.

KERNEL TIMER

December 4, 2022 LDD / EnsiCaen - 72

#include <linux/timer.h>
struct timer_list {

/* ... */
unsigned long expires;
void (*function)(unsigned long);
unsigned long data;

};
void init_timer(struct timer_list *timer); /* dynamic */
struct timer_list TIMER_INITIALIZER(_function, _expires, _data); /* static */

void add_timer(struct timer_list * timer);
int del_timer(struct timer_list * timer);
int mod_timer(struct timer_list *timer, unsigned long expires);

▪ If the hardware interrupt must be managed as quickly as possible, most of the data

management can be safely delayed to a later time.

▪ The kernel executed the tasklet asynchronously and quickly, for a short period of time, in the

context of a “soft interrupt” in atomic mode.

TASKLET

December 4, 2022 LDD / EnsiCaen - 73

struct tasklet_struct {
/* ... */
void (*func)(unsigned long);
unsigned long data;

};
void tasklet_init(struct tasklet_struct *t,
void (*func)(unsigned long), unsigned long data);
DECLARE_TASKLET(name, func, data);

tasklet_schedule(name);

▪ Workqueue functions may have higher latency but need not be atomic.

▪ Run in the context of a special kernel process with more flexibility. Functions can sleep.

WORKQUEUE

December 4, 2022 LDD / EnsiCaen - 74

struct workqueue_struct *create_workqueue(const char *name);
int queue_work(struct workqueue_struct *queue,

struct work_struct *work);
int queue_delayed_work(struct workqueue_struct *queue,

struct work_struct *work,
unsigned long delay);

int cancel_delayed_work(struct work_struct *work);
void flush_workqueue(struct workqueue_struct *queue);
void destroy_workqueue(struct workqueue_struct *queue);

▪ If you only submit tasks to the queue occasionally, it may be more efficient to simply use the

shared, default workqueue that is provided by the kernel.

THE SHARED QUEUE

December 4, 2022 LDD / EnsiCaen - 75

DECLARE_WORK(name, void (*function)(void *), void *data);
int schedule_work(struct work_struct *work);
int schedule_delayed_work(struct work_struct *work,

unsigned long delay);

RT LAYER OVERVIEW

Using SA-RT method

SA-RT OVERVIEW

December 4, 2022 LDD / EnsiCaen - 77

USB

Mouse

MyTuxit

ISR#1()

MyTuxit

Tasklet()

IRQ#1

RawHw

Data

Kernel atomic

HW

USB

Context

Kernel Non atomic

MyTuxit

Open()

MyTuxit

Read()
MyTuxit

Write()

MyTuxit

Work()

User Land
SCI

MyTuxit

kProcess

KERNEL

W

Q

S

W

Q

RawMouse

Data

Mouse

Position

wake_up_interruptible

IRQ#1 REQUEST

complete

MyTuxit

ISR#2()

IRQ#2

HW ack

R/W data

Data pre-process

External

Processing

CONTROL

DATA

Legend:

GLOBAL

STRUCTURE

INTERRUPT HANDLING

• It is always undesirable to
have the processor wait on
external events

• An interrupt is simply a
signal that the hardware can
send when it wants the
processor’s attention

▪ Whenever a hardware interrupt reaches the processor, an internal counter is incremented,

providing a way to check whether the device is working as expected.

▪ Reported interrupts are shown in /proc/interrupts.

THE /PROC INTERFACE

December 4, 2022 LDD / EnsiCaen - 79

▪ A driver need only register a handler for its device’s interrupts, and handle them properly when they
arrive.

▪ The kernel keeps a registry of interrupt lines. A module is expected to request irq channel before
using it, and to release it when it’s done.

▪ Flags: SA_INTERRUPT, SA_SHIRQ

▪ dev_name: The string passed to request_irq is used in /proc/interrupts to show the owner of the
interrupt

▪ void *dev_id: this pointer is used for shared interrupt lines.

INSTALLING AN INTERRUPT HANDLER

December 4, 2022 LDD / EnsiCaen - 80

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long flags,
const char *dev_name, void *dev_id)

void free_irq(unsigned int irq, void *dev_id);

▪ Give feedback to device about interrupt reception

▪ Transfer data according to the meaning of the interrupt being serviced.

▪ Awake processes sleeping on the device.

IMPLEMENTING A HANDLER

December 4, 2022 LDD / EnsiCaen - 81

void irq_handle (int irq, void* dev, struct pt_regs* regs)
{

wake_up_interruptible (&q);
}

//--
static int device_open (struct inode *inode, struct file *file)
{

irq = request_irq (7, irq_handle, SA_INTERRUPT, “my_irq", NULL);

return 0;

}

TASKLET: TOP HALF

December 4, 2022 LDD / EnsiCaen - 82

void short_do_tasklet(unsigned long);
DECLARE_TASKLET(short_tasklet, short_do_tasklet, 0);

irqreturn_t short_tl_interrupt(int irq, void *dev_id,
struct pt_regs *regs)

{
short_incr_tv(&tv_head);
tasklet_schedule(&short_tasklet);
short_wq_count++; /* record that an interrupt arrived */
return IRQ_HANDLED;

}

TASKLET: BOTTOM HALF void short_do_tasklet (unsigned long unused)
{
/* awake any reading process */
wake_up_interruptible(&short_queue);

}

▪ Since the workqueue function runs in process context, it can sleep if need be.

WORKQUEUES

December 4, 2022 LDD / EnsiCaen - 83

static struct work_struct short_wq;
INIT_WORK(&short_wq, (void (*)(void *)) short_do_tasklet, NULL);
/---/
irqreturn_t short_wq_interrupt(int irq, void *dev_id,

struct pt_regs *regs)
{

/* Grab the current time information. */
do_gettimeofday((struct timeval *) tv_head);
short_incr_tv(&tv_head);
/* Queue the bh. Don't worry about multiple enqueueing */
schedule_work(&short_wq);
short_wq_count++; /* record that an interrupt arrived */
return IRQ_HANDLED;

}

ALLOCATING
MEMORY

• Memory in device drivers, controlled by MMU

• How to optimize memory resources

• Kernel offers a unified memory management

interface to the drivers, then knowledge of
internal details of memory management is
useless (segmentation, paging…)

▪ Do not clear memory it obtains

▪ The allocated region is also contiguous in physical memory

▪ The virtual address range used by kmalloc and __get_free_pages features a one-to-one mapping to
physical memory, possibly shifted by a constant PAGE_OFFSET value.

▪ Available only in page-sized chunks (2nKB)

▪ Most common flags:

▪ GFP_KERNEL in process context for kernel memory allocation

▪ GFP_NOFS and GFP_NOIO for more restrictions

▪ GFP_ATOMIC in interrupt, tasklets and timer context that cannot sleep

▪ GFP_USER for user space allocation

KMALLOC / KFREE

December 4, 2022 LDD / EnsiCaen - 85

void *kmalloc(size_t size, int flags);
void kfree();

▪ Needs to allocate big chunks of memory

▪ Order is the base-two logarithm of the number of pages, (i.e., log2N). For example, 0 → 1

page, 3 → 8 pages

▪ Still virtual memory address handled by the MMU but with direct mapping with physical

memory

BIG CHUNK OF MEMORY

December 4, 2022 LDD / EnsiCaen - 86

unsigned long __get_free_pages(unsigned int flags,
unsigned int order);

void free_pages(unsigned long addr, unsigned long order);

▪ Allocating many objects of the same size, over and over

▪ Kernel facilities: special pools for high-volume objects: lookaside cache

▪ Mainly used for USB and SCSI

CACHES

December 4, 2022 LDD / EnsiCaen - 87

/* create a cache for quanta */
scullc_cache = kmem_cache_create("scullc", scullc_quantum, 0,

SLAB_HWCACHE_ALIGN, NULL, NULL);

/* Allocate a quantum using the memory cache */
dptr->data[i] = kmem_cache_alloc(scullc_cache, GFP_KERNEL);

/* And these lines release memory: */
kmem_cache_free(scullc_cache, dptr->data[i]);

▪ There are places in the kernel where memory allocations cannot be allowed to fail. As a way of

guaranteeing allocations in those situations, the kernel developers created an abstraction

known as a memory pool (or “mempool”). A memory pool is really just a form of a lookaside

cache that tries to always keep a list of free memory around for use in emergencies.

MEMORY POOLS

December 4, 2022 LDD / EnsiCaen - 88

/* setup */
cache = kmem_cache_create(. . .);
pool = mempool_create(MY_POOL_MINIMUM, mempool_alloc_slab,

mempool_free_slab,cache);
/* objects allocation and free */
void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
/* releasing */
void mempool_destroy(mempool_t *pool);

▪ Allocates a contiguous memory region in the virtual address space.

▪ Pages are not consecutive in physical memory ➔ less efficient

▪ One of the fundamental Linux memory allocation mechanisms

▪ The address range used by vmalloc and ioremap is completely synthetic, and each allocation builds
the (virtual) memory area by suitably setting up the page tables.

▪ Cannot be used in atomic context: it uses kmalloc(GFP_KERNEL)

▪ In the range from VMALLOC_START to VMALLOC_END.

VMALLOC

December 4, 2022 LDD / EnsiCaen - 89

void *vmalloc(unsigned long size);
void vfree(void * addr);
void *ioremap(unsigned long offset, unsigned long size);
void iounmap(void * addr);

▪ To be used for the microprocessor, on top of the processor’s MMU.

▪ Not suitable for a driver that needs a real physical address (such as a DMA address, used by

peripheral hardware to drive the system’s bus)

▪ The right time to call vmalloc is when you are allocating memory for a large sequential buffer that

exists only in software.

▪ vmalloc has more overhead than __get_free_pages

▪ retrieve the memory and build the page tables

▪ It doesn’t make sense to call vmalloc to allocate just one page.

▪ ioremap is most useful for mapping the (physical) address of a PCI buffer to (virtual) kernel

space. For example, it can be used to access the frame buffer of a PCI video device; such

buffers are usually mapped at high physical addresses, outside of the address range for which

the kernel builds page tables at boot time.

VMALLOC & IO-REMAP

December 4, 2022 LDD / EnsiCaen - 90

▪ Allocation at boot time is the only way to retrieve consecutive memory pages while bypassing

the limits imposed by __get_free_pages

▪ It bypasses all memory management policies by reserving a private memory pool. This

technique is inelegant and inflexible, but it is also the least prone to failure.

▪ A module can’t allocate memory at boot time; only drivers directly linked to the kernel can do

that !

▪ A device driver using this kind of allocation can be installed or replaced only by rebuilding the kernel

and rebooting the computer.

▪ private use reduces the amount of RAM left for normal system operation.

ACQUIRING A HUGE BUFFERS AT BOOT TIME

December 4, 2022 LDD / EnsiCaen - 91

void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

COMMUNICATING
WITH HARDWARE

• The driver is the abstraction layer between

software concepts and hardware circuitry

• A driver can access I/O ports and I/O

memory while being portable across Linux

platforms

▪ A programmer accessing I/O registers must be careful to avoid being tricked by CPU (or

compiler) optimizations that can modify the expected I/O behavior.

▪ A driver must ensure that no caching is performed and no read or write reordering takes place

when accessing registers.

▪ Example : A rmb (read memory barrier) guarantees that any reads appearing before the barrier are

completed prior to the execution of any subsequent read.

I/O REGISTERS AND CONVENTIONAL MEMORY

December 4, 2022 LDD / EnsiCaen - 93

writel(dev->registers.addr, io_destination_address);
writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);

▪ Exclusive access to the ports: the kernel provides a registration interface that allows your driver
to claim the ports it needs

▪ Ports can be access in 8/16/32 bits, and also per string

▪ Much of the source code related to port I/O is platform-dependent

I/O PORT

December 4, 2022 LDD / EnsiCaen - 94

struct resource *request_region(unsigned long first,
unsigned long n, const char *name);

void release_region(unsigned long start, unsigned long n);
int check_region(unsigned long first, unsigned long n);

unsigned inb/w/l(unsigned port);
void outb/w/l(unsigned char/short/long byte, unsigned port);

▪ The main mechanism used to communicate with devices is through memory-mapped registers

and device memory.

▪ I/O memory is simply a region of RAM-like locations that the device makes available to the

processor over the bus

▪ Example : video data, Ethernet packets, device registers

▪ You must also ensure that this I/O memory has been made accessible to the kernel.

I/O MEMORY

December 4, 2022 LDD / EnsiCaen - 95

struct resource *request_mem_region(unsigned long start,
unsigned long len, char *name);

void release_mem_region(unsigned long start, unsigned long len);
int check_mem_region(unsigned long start, unsigned long len);

void *ioremap(unsigned long phys_addr, unsigned long size);
void iounmap(void * addr);

▪ addr should be an address obtained from ioremap (perhaps with an integer offset); the return

value is what was read from the given I/O memory.

▪ If you need to operate on a block of I/O memory

ACCESSING I/O MEMORY

December 4, 2022 LDD / EnsiCaen - 96

unsigned int ioread8/16/32(void *addr);
void iowrite8/16/32(u8 value, void *addr);

void memset_io(void *addr, u8 value, unsigned int count);
void memcpy_fromio(void *dest, void *source, unsigned int count);
void memcpy_toio(void *dest, void *source, unsigned int count);

LINKED LISTS

• To reduce the amount of duplicated code,

the kernel developers have created a

standard implementation of circular, doubly

linked lists

• It is your responsibility to implement a

locking scheme

▪ To use the Linux list facility in your code, you need only embed a list_head inside the

structures that make up the list

LIST HEAD

December 4, 2022 LDD / EnsiCaen - 98

struct todo_struct {
struct list_head list;
int priority; /* driver specific */
/* ... add other driver-specific fields */

};

struct list_head {
struct list_head *next, *prev;

};

THE LIST HEAD DATA STRUCTURE

December 4, 2022 LDD / EnsiCaen - 99

LIST MAKING

December 4, 2022 LDD / EnsiCaen - 100

list_add(struct list_head *new, struct list_head *head);
list_add_tail(struct list_head *new, struct list_head *head);
list_del(struct list_head *entry);
list_del_init(struct list_head *entry);
list_move(struct list_head *entry, struct list_head *head);
list_move_tail(struct list_head *entry, struct list_head *head);
list_empty(struct list_head *head); /* check the list is empty */
/* join */
list_splice(struct list_head *list, struct list_head *head);

/* maps a list_head structure pointer back into a pointer to the
structure that contains */
list_entry(struct list_head *ptr, type_of_struct, field_name);

LIST BROWSING

December 4, 2022 LDD / EnsiCaen - 101

list_for_each(struct list_head *cursor,
struct list_head *list);

list_for_each_prev(struct list_head *cursor,
struct list_head *list);

list_for_each_safe(struct list_head *cursor,
struct list_head *next,
struct list_head *list);

/* no need to use list_entry with this */
list_for_each_entry(type *cursor,

struct list_head *list,
member);

list_for_each_entry_safe(type *cursor,
type *next,
struct list_head *list,
member);

THE LINUX
DEVICE MODEL

• Device classes

• Hot-pluggable devices

• Object lifecycles

▪ The kobject is the fundamental structure that holds the device model together

▪ Reference counting of objects

▪ Sysfs representation

▪ Data structure glue

▪ Hotplug event handling

▪ struct cdev *device = container_of(kp, struct cdev, kobj);

KOBJECT BASICS

December 4, 2022 LDD / EnsiCaen - 103

struct cdev {
struct kobject kobj;
struct module *owner;
struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;

};

KOBJECT HANDLING

December 4, 2022 LDD / EnsiCaen - 104

void kobject_init(struct kobject *kobj);
struct kobject *kobject_get(struct kobject *kobj);
void kobject_put(struct kobject *kobj);

void my_object_release(struct kobject *kobj)
{

struct my_object *mine = container_of(kobj,
struct my_object, kobj);

/* Perform any cleanup on this object, then... */
kfree(mine);

}

▪ At a glance… For experts ;)

KOBJECT HIERARCHIES, KSETS, AND SUBSYSTEMS

December 4, 2022 LDD / EnsiCaen - 105

void/int kobject_init/add/register/del(struct kobject *kobj);
void/int kset_init/add/register/del(struct kset *kset);
void/int subsystem_init/un/register(struct subsystem *subsys);

▪ The release method is not stored in the kobject itself

▪ It is associated with the type of the structure that contains the kobject

KOBJECT TYPES

December 4, 2022 LDD / EnsiCaen - 106

struct kobj_type {
void (*release)(struct kobject *);
struct sysfs_ops *sysfs_ops;
struct attribute **default_attrs;

};

struct kobj_type *get_ktype(struct kobject *kobj);

▪ Kobjects are the mechanism behind the sysfs virtual filesystem.

▪ For every directory found in sysfs, there is a kobject

▪ Every kobject exports some attributes, which appear in that kobject’s sysfs directory as files
containing kernel-generated information.

▪ Sysfs entries for kobjects are always directories, so a call to kobject_add results in the creation of a
directory in sysfs

▪ The name assigned to the kobject (with kobject_set_name) is the name used for the sysfs directory

▪ The sysfs entry is located in the directory corresponding to the kobject’s parent pointer. If parent is
NULL when kobject_add is called,it is set to the kobject embedded in the new kobject’s kset; thus,the
sysfs hierarchy usually matches the internal hierarchy created with ksets

▪ For example, /sys/devices sysfs represents all system devices

LOW-LEVEL SYSFS OPERATIONS

December 4, 2022 LDD / EnsiCaen - 107

SYSFS OPS & PARAMS

December 4, 2022 LDD / EnsiCaen - 108

struct attribute {
char *name;
struct module *owner;
mode_t mode; /* S_IRUGO read-only,

S_IWUSR write access to root only */
};

struct sysfs_ops {
ssize_t (*show)(struct kobject *kobj,

struct attribute *attr,
char *buffer);

ssize_t (*store)(struct kobject *kobj,
struct attribute *attr,
const char *buffer, size_t size);

};

▪ If you wish to add a new attribute to a kobject’s sysfs directory, simply fill in an attribute

structure and pass it to:

int sysfs_create_file(struct kobject *kobj, struct attribute *attr);

int sysfs_remove_file(struct kobject *kobj, struct attribute *attr);

NON DEFAULT ATTRIBUTES

December 4, 2022 LDD / EnsiCaen - 109

▪ Handle larger chunks of binary data that must be passed, untouched, between user space and

the device

int sysfs_create/remove_bin_file(struct kobject *kobj,
struct bin_attribute *attr);

BINARY ATTRIBUTES

December 4, 2022 LDD / EnsiCaen - 110

struct bin_attribute {
struct attribute attr;
size_t size;
ssize_t (*read)(struct kobject *kobj, char *buffer,

loff_t pos, size_t size);
ssize_t (*write)(struct kobject *kobj, char *buffer,

loff_t pos, size_t size);
};

▪ A hotplug event is a notification to user space from the kernel that something has changed in

the system’s configuration.

▪ They are generated whenever a kobject is created or destroyed

▪ New device plugged in with a USB cable

▪ Hotplug events turn into an invocation of /sbin/hotplug which can respond to each event by

loading drivers, creating device nodes, mounting partitions, or taking any other action that is

appropriate.

▪ Before the event is handed to user space,code associated with the kobject (or,more

specifically,the kset to which it belongs) has the opportunity to add information for user space

or to disable event generation entirely.

HOTPLUG EVENT GENERATION

December 4, 2022 LDD / EnsiCaen - 111

▪ The filter hotplug operation is called whenever the kernel is considering generating an event

for a given kobject. If filter returns 0,the event is not created.

▪ The name parameters is provided to user space when user-space hotplug programm is

involked

HOTPLUG OPERATIONS

December 4, 2022 LDD / EnsiCaen - 112

struct kset_hotplug_ops {
int (*filter)(struct kset *kset, struct kobject *kobj);
char *(*name)(struct kset *kset, struct kobject *kobj);
int (*hotplug)(struct kset *kset, struct kobject *kobj,
char **envp, int num_envp, char *buffer,
int buffer_size);

};

▪ Everything else that the hotplug script might want to know is passed in the environment. The

hotplug method gives an opportunity to add useful environment variables

▪ kset and kobject describe the object for which the event is being generated. The envp array is a

place to store additional environment variable definitions (in the usual NAME=value format); it

has num_envp entries available. The variables themselves should be encoded into buffer, which

is buffer_size bytes long.

HOTPLUG ENVIRONMENT VARIABLES

December 4, 2022 LDD / EnsiCaen - 113

int (*hotplug)(struct kset *kset, struct kobject *kobj,
char **envp, int num_envp, char *buffer,
int buffer_size);

BUSES,
DEVICES,
AND DRIVERS
ANNEX

▪ Not mandatory for basic drivers, but

better to know

▪ What is happening inside the PCI,USB,etc.

layers

▪ The core “devices”
tree shows how the
mouse is connected
to the system

▪ The “bus” tree tracks
what is connected to
each bus

▪ The under “classes”
concerns itself with
the functions
provided by the
devices, regardless
of how they are
connected.

BUSES, DEVICES, AND DRIVERS

December 4, 2022 LDD / EnsiCaen - 115

▪ A channel between the processor and one or more devices

▪ All devices are connected via a bus, even if it is an internal, virtual,“ platform” bus

▪ Buses can plug into each other

BUSES

December 4, 2022 LDD / EnsiCaen - 116

struct bus_type {
char *name;
struct subsystem subsys;
struct kset drivers;
struct kset devices;
int (*match)(struct device *dev, struct device_driver *drv);
struct device *(*add)(struct device * parent, char * bus_id);
int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
/* Some fields omitted */

};

▪ match : Whenever a new device or driver is added for this bus

▪ return a nonzero value.

▪ bus level, because the core kernel cannot know how to match

▪ might be as simple as

▪ return !strncmp(dev->bus_id, driver->name, strlen(driver->name));

▪ hotplug : This method allows the bus to add variables to the environment prior to the generation
of a hotplug event in user space

▪ Operation on all attached device or driver

BUS METHODS

December 4, 2022 LDD / EnsiCaen - 117

envp[0] = buffer;
if (snprintf(buffer, buf_size,“MYBUS_VERSION=%s“,Version) >= buf_size)

return -ENOMEM;
envp[1] = NULL;
return 0;

int bus_for_each_dev(struct bus_type *bus, struct device *start,
void *data, int (*fn)(struct device *, void *));

▪ Almost every layer in the Linux device model provides an interface for the addition of
attributes

▪ Compile-time creation and initialization of bus_attribute structures:

▪ BUS_ATTR(name, mode, show, store);

▪ Attributes belonging to a bus is created explicitly with:

▪ int bus_create_file(struct bus_type *bus, struct bus_attribute *attr);

BUS ATTRIBUTES

December 4, 2022 LDD / EnsiCaen - 118

struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *bus, char *buf);
ssize_t (*store)(struct bus_type *bus, const char *buf,
size_t count);

};

▪ The device structure contains the information that the device model core needs to model the

system

▪ Device registration

▪ int device_register(struct device *dev);

DEVICES

December 4, 2022 LDD / EnsiCaen - 119

struct device {
struct device *parent;
struct kobject kobj;
char bus_id[BUS_ID_SIZE];
struct bus_type *bus;
struct device_driver *driver;
void *driver_data;
void (*release)(struct device *dev);

};

▪ Device entries in sysfs can have attributes.

▪ Compile-time creation and initialization of device_attribute structures:

▪ DEVICE_ATTR(name, mode, show, store);

▪ Attributes belonging to a bus is created explicitly with:

▪ int device_create_file(struct device *device,
struct device_attribute *entry);

DEVICE ATTRIBUTES

December 4, 2022 LDD / EnsiCaen - 120

struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, char *buf);
ssize_t (*store)(struct device *dev, const char *buf,

size_t count);
};

▪ The device model tracks all of the drivers known to the system

▪ Device registration

▪ int driver_register(struct device_driver *drv);

DEVICE DRIVERS

December 4, 2022 LDD / EnsiCaen - 121

struct device_driver {
char *name;
struct bus_type *bus;
struct kobject kobj;
struct list_head devices;
int (*probe)(struct device *dev);
int (*remove)(struct device *dev);
void (*shutdown) (struct device *dev);

};

▪ Device entries in sysfs can have attributes.

▪ Compile-time creation and initialization of device_attribute structures:

▪ DEVICE_ATTR(name, mode, show, store);

▪ Attributes belonging to a bus is created explicitly with:

▪ int device_create_file(struct device *device,
struct device_attribute *entry);

DEVICE DRIVER ATTRIBUTES

December 4, 2022 LDD / EnsiCaen - 122

struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *drv, char *buf);
ssize_t (*store)(struct device_driver *drv, const char *buf,
size_t count);

};

▪ A class is a higher-level view of a device that abstracts out low-level implementation details.

▪ Drivers may see a SCSI disk or an ATA disk, but at the class level, they are all simply disks.

Classes allow user space to work with devices based on what they do, rather than how they are

connected or how they work.

▪ Classe_device, registration, attribute…

CLASSES

December 4, 2022 LDD / EnsiCaen - 123

▪ On embedded systems, devices are often not connected through a bus allowing enumeration,

hotplugging, and providing unique identiers for devices.

▪ However, we still want the devices to be part of the device model.

▪ The solution to this is the platform driver / platform device infrastructure.

▪ The platform devices are the devices that are directly connected to the CPU, without any kind

of bus.

PLATFORM DRIVERS & EMBEDDED SYSTEMS

December 4, 2022 LDD / EnsiCaen - 124

▪ Example of the iMX serial port driver, in drivers/serial/imx.c.

▪ The driver instantiates a platform driver structure:

And registers/unregisters it at init/cleanup:

platform_driver_register(&serial_imx_driver);

INITIALIZATION OF A PLATFORM DRIVER

December 4, 2022 LDD / EnsiCaen - 125

static struct platform_driver serial_imx_driver = {
.probe = serial_imx_probe,
.remove = serial_imx_remove,
.driver = {

.name = "imx-uart",

.owner = THIS_MODULE,
},

};

▪ As platform devices cannot be detected dynamically, they are statically defined, direct

instantiation of platform device structures on ARM

▪ The matching between a device and the driver is simply done using the name.

INSTANTIATION OF A PLATFORM DEVICE

December 4, 2022 LDD / EnsiCaen - 126

static struct platform_driver serial_imx_driver = {
.probe = serial_imx_probe,
.remove = serial_imx_remove,
.driver = {

.name = "imx-uart",

.owner = THIS_MODULE,
},

};

L’École des INGÉNIEURS Scientifiques

MERCI
Enseignement Linux Embarqué

André Lépine

