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ARCHITECTURES POUR LE CALCUL

ÉVALUATION

• Examen de pratique sur ordinateur (1h30)

L'évaluation de la compétence se fera sur machine personnelle ou machine 
école et portera sur les points suivants :

• Création d’un projet sous IDE CCS. A l’image du projet présent dans 
cm/eval/examen_nom

• Optimisation d’une fonction algorithmique élémentaire (cf. trame de TP)

◦ écriture en C canonique

◦ écriture ASM C6000 canonique

◦ écriture ASM VLIW

◦ écriture de l’algorithme optimisé avec l’une des techniques avancée 
suivante :

• Vectorisation en langage C par programmation intrinsèque

• Pipelining software en ASM C6000

• Vectorisation en base 2 ou 4 en ASM C6000
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Digital electronics history

Quick reminder

1947: Invention of the Bipolar Junction Transistor  →

by Bardeen, Schokley and Brattain (Bell labs), Nobel Prize winners

1958/1959: Creation of Integrated Circuits 

by Texas Instruments (hybrid IC), then Fairchild (true monolithic IC)

1960: Invention of the MOS Field-Effect Transistor  →  

by Mohammed Atalla and Dawon Kahng
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     First processor

The first ever commercialised processor is the Intel 4004 in 1971.

It has 2,300 transistors with a 10 µm etching process (4-bit processor, 16 pins, 740 kHz, 
90 kIPS or kilo-Instructions Per Second).

Intel 4004 die

Intel 4004
architecture

Intel 4004
integrated 

circuit
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Processors evolution

Ever since, processors have evolved following natural selection.

Those that matched specific needs improved while others disappeared from markets 
and research labs. 
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Processors evolution

As for animals and plants, the evolution process of processors is never-ending.

New processor architectures are likely to born in the next few years!

Let’s take a look at the current processor architectures.
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Common processor architectures

MCU AP GPP SoC / SoB FPGA DSP (GP) GPU 
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Common processor architectures

MCU
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Controller
Unit

AP

Application
Processor

GPP

General 
Purpose 
Processor
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System
on
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- FPGA-AP
- FPGA-MCU
- GPP-GPU
- AP
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Programmable 
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Graphics 
Processing 
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Computer

General architecture

Control processors

Specialised architectures

Coprocessors or Calculus processors

Hybrid 
architectures
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ON THE DIVERSITY OF PROCESSOR ARCHITECTURES

     Common processor architectures
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MCU – MICROCONTROLLER UNIT

     Applications

MCUs (Microcontroller Units, fr: micro-contrôleurs) are the most common processors in 
our environment (talking about quantity).

We use about 200 processors every day, without even being aware!
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MCU – MICROCONTROLLER UNIT

     Applications

MCUs are control processors that are dedicated to the supervision of electronic 
processes. They control their input/output interfaces with their application-custom 
embedded firmware.

They aim for markets applications that require low-cost, low-consumption, small-size, 
and big production volumes.
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MCU – MICROCONTROLLER UNIT

     Applications

The IoT (Internet of Thing, fr: objets connectés) is the major market for MCUs. The IoT is 
the Internet extension to physical world objects and places. It is considered as the third 
Internet evolution and has been therfore named « Web 3.0 ».

With 3.6 billions of active connections in 2015, 11.7 billions in 2020 and 30 billions 
planned in 2025, the IoT counted for 18% of MCUs population in 2019 and will be 
around 29% in 2025.
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MCU – MICROCONTROLLER UNIT

     Architecture

MCU processors are digital systems integrated onto an Integrated Circuit.

They are designed to be stand-alone (no need for external RAM, HDD … ).

Central

Processing

Unit

Main

memory

Bus

Peripherals

specialized

functions

MCU

I/O
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MCU – MICROCONTROLLER UNIT

     Board and schematic

Example of a schematic that uses a Microchip’s PIC18 MCU.

Olimex PIC-USB-4550 board.
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MCU – MICROCONTROLLER UNIT

     Board and schematic

Exercise: link these board devices to the schematic in the previous slide.
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MCU – MICROCONTROLLER UNIT

     MCU families

There is a big number of MCU products from various designers and foundries, each 
made for different uses. 

MCUs from the same family possess the same CPU and associated buses. The ISA 
(Instruction Set Architecture, fr: jeu d’instructions) and the toolchain are therefore 
similar. The difference between same-family MCUs resides in the peripherals set and 
the memory resources.

Central

Processing

Unit

Main

memory

Bus

Peripher.

MCU

I/O
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MCU – MICROCONTROLLER UNIT

     Arduino project

The Arduino project is certainly the most famous MCU-based electronic project. 
However it is too user-friendly (too magic, too many hidden things) and is not used in 
professional environments, which is why it is not studied in engineer schools.
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MCU – MICROCONTROLLER UNIT

     ARM’s Cortex CPU

Even though the MCU market is very competitive, the vast majority of MCU founders 
(e.g. STMicroelectronics, Renesas, Texas Instruments, NXP, …) use similar CPU 
architectures: the Cortex-M family, designed by the British company ARM

This guaranties an access to reliable development tools, libraries and software services. 
Some tools can also be open-source (IP / Graphical / USB / Bluetooth, stack, RTOS, …).

20

MCU – MICROCONTROLLER UNIT

     ARM’s Cortex CPU

ARM offers the Cortex-M series, with ‘M’ standing for “MCU”.

This includes a whole family of MCU cores that are suitable for a wide range of applications.
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MCU – MICROCONTROLLER UNIT

     STMicroelectronics

As an example let’s take a look at the range of STM32. Those are 32-bit MCUs based on 
a Cortex-M core.

They are designed by the French-Italian company STMicroelectronics, which also is the 
main European manufacturer.
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MCU – MICROCONTROLLER UNIT

     STMicroelectronics
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MCU – MICROCONTROLLER UNIT

     STMicroelectronics

The STMicroelectronics Nucleo project offers low-cost (≈ €10) evaluation boards that 
use ARM-based MCUs and industrial development tools.

Nucleo-64

-Power supply 

-Programmer 
(JTAG emulator)

-Target MCU

-Switch and LED

-External ports

-Shields connectors

-Arduino shield 
connectors
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MCU – MICROCONTROLLER UNIT

     Market shares

Let’s take a look at an annual markets study.
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MCU – MICROCONTROLLER UNIT

     Market shares
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MCU – MICROCONTROLLER UNIT

     Market shares
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MCU – MICROCONTROLLER UNIT

     Market shares

28

MCU – MICROCONTROLLER UNIT

     Market shares
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GPP – GENERAL PURPOSE PROCESSOR

     Applications

GPP (General Purpose Processors) have a complex CPU architecture that gives them a 
great adaptability especially for executing non-optimised programs.

Most of the time, those programs contain sequential code with a lot of tests and 
function calls, which are difficult to accelerate.

root/kernel/fork.c - www.kernel.org 
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GPP – GENERAL PURPOSE PROCESSOR

     Applications

Their target market are personal and professional computer and laptops.

Thus their main usage is for general applications (i.e. not specific) for personal and 
professional uses. Most of the time that does not require all the computing power that 
is really available

Slideshow
(LibreOffice Impress)

Development
(Visual Studio Code)

System monitor
(Ubuntu)
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GPP – GENERAL PURPOSE PROCESSOR

     Applications

Of course some applications are likely to need full capability of the hardware, even 
though they are not the most common ones.

One can think of audio, image and video processing or software development as well-
known examples.

Audio editing (Ableton) Audio processing Image processing
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GPP – GENERAL PURPOSE PROCESSOR

     Applications

Industrial applications are a historical part of GPP uses.

They are typically encountered on control tasks or specialised calculus functions. This 
market tends to use integrated solutions, such as AP (Application Processor), SoC 
(System on Chip), DSP (Digital Signal Processor), FPGA (Field Programmable Gate Array) 
...

Radar GM400 
(Thalès)

Rafale 
(Dassault)

Automatic bollard
Box j200
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GPP – GENERAL PURPOSE PROCESSOR

     Applications

Please note that GPPs can also be used in embedded systems applications.

For instance this is the NUC Core i5, an Intel motherboard.
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GPP – GENERAL PURPOSE PROCESSOR

     Intel architectures

Let’s have a look on major Intel architectures. Note that Intel is the historical and 
current leader of GPP market, but it is also the leader of semi-conductors market.
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GPP – GENERAL PURPOSE PROCESSOR

     Intel architectures

Today’s leading GPP architectures ar the Intel Core i3/i5/i7/i9 families.

However there are many other actors and manufacturers aiming for different markets.
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GPP – GENERAL PURPOSE PROCESSOR

     Architecture

A GPP consists of a are processing element, with no main memory.

A GPP possesses one or several CPU (of same architecture) that are associated with 
their cache memories. They use an UMA (Uniform Memory Access) and and interface 
controller.

CPU

L2 cache (UMA)

Memory and I/O controller

GPP

L1 cache

CPU

L1 cache
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GPP – GENERAL PURPOSE PROCESSOR

     Example: Intel Core i5

Example of the Intel Core i5 family.

GPP

IGP
Integrated Graphical Processor
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GPP – GENERAL PURPOSE PROCESSOR

     Example: Intel Core i5

Intel Core i5 700/800 Lynnfield die
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GPP – GENERAL PURPOSE PROCESSOR

     Example: Intel Core i5

GPP integrated into a motherboard

Intel Core i5 700/800 Lynnfield die 
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GPP – GENERAL PURPOSE PROCESSOR

     Example: Intel Core i5

GPP integrated into a motherboard

Intel Core i5 700/800 Lynnfield die 
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GPP – GENERAL PURPOSE PROCESSOR

     Motherboard

A GPP must be carried onto a motherboard, on which main memory (RAM) and external 
interface peripherals will be placed.

Example of a motherboard from ASUS, second leader of world market in 2016.

GPP socket

DDR slots
(main memory)

Interface 
connectors

Peripheral slots
(external peripherals)

Chipset / South Bridge
(interface peripherals)
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GPP – GENERAL PURPOSE PROCESSOR

     Superscalar architecture

GPPs have CPU said to be superscalar. Processors with this type of CPU pipeline are 
generally characterised by the implementation of the following hardware accelerating 
mechanisms:

● Out-Of-Order execution stage: instructions are not executed in the programmed 
order. A hardware scheduler looks for dependencies on data, the intermediate 
results are stored in other registers and instructions are executed in another order (in 
comparison to the “programmed” order).

● Branch-prediction stage: use statistics and counters to estimate the success rate of a 
test statement (if, else, for, while, …)

● RISC-like execution stage: even if the ISA (Instruction Set Architecture) is CISC.
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GPP – GENERAL PURPOSE PROCESSOR

     Superscalar architecture

Die of a Core i7 CPU (Intel Sandy Bridge generation).

Intel Core i7 Sandy Bridge CPU/Core
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GPP – GENERAL PURPOSE PROCESSOR

     Superscalar architecture

However, GPP’s great adaptability and hardware 
complexity leads to a lack of determinism and performance 
when it comes to the execution of specific algorithms.

For GPPs, the calculation power is simply not good when 
compared to the power consumption and the price.

GPPs are designed to support an high-end OS (Operating 
System, fr: Système d’exploitation) and to execute 
application code. As already mentioned, they are not 
specialised for signal, image, audio and video processing 
for instance.
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CPU

L2 cache (UMA)

Memory and I/O controller

GPP

L1 cache

CPU

L1 cache

GPP – GENERAL PURPOSE PROCESSOR

     Summary

Superscalar CPU
 - Out-Of-Order execution

 - Branch prediction

 - Not determinist

 - Bad (calculus power) / (Watt x Cost) ratio

Memory
 - Uniform Memory Access (UMA)

 - Cache memory:

      → Fast transfer technologies

      → Copy information from main memory
          (DATA or INST.)

      → Cache controllers for keeping data up to date

      → Not determinist



47

GPP – GENERAL PURPOSE PROCESSOR

     Market shares: Intel vs. AMD

https://www.cpubenchmark.net/market_share.html 
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AP – APPLICATION PROCESSOR

     Applications

The AP (Application Processor) market is recent and has started with mobile phones 
and tablets.

APs embed many functionalities and hardware services, and even SoC (System on Chip).
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AP – APPLICATION PROCESSOR

     Applications

Mobile phones is the main target market for APs.

This market has led to an overwhelming use of the Android operating system in 2016 
(Android is a Linux-kernel based OS).

Source: 
Statista 2021
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AP – APPLICATION PROCESSOR

     Applications

However application processors are seen in many other embedded systems as well, 
whatever the final application: consumer, defence, transport, …

In those cases they are usually embedded with an operating system and a graphical 
interface.

Freebox Revolution Sony X94C 4K television Cook tablet
(EOLANE, made in Caen)
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AP – APPLICATION PROCESSOR

     Applications

In most cases, APs are used by high-level operating systems.

On those markets, GNU/Linux systems and customs versions reign supreme. 

Example of EOLANE (French, #2 in Europe): industrial platform working with a Freescale iMX6 SoC/AP based on 
a GNU/Linux system.
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AP – APPLICATION PROCESSOR

     Applications

Here are the two major solutions of user-oriented AP-based boards: 

Raspberry Pi (Broadcom BCMxxxx SoC) and Beaglebone (TI AM335x SoC) projects.

These solutions are also based on GNU/Linux operating systems.

They are more likely to be used for prototyping stages or in a teaching environment, 
but cannot be industrialised. However hardened versions exist. 
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AP – APPLICATION PROCESSOR

     Architecture

An application processor has one or several superscalar generalist CPUs. Their work is 
to execute the high-level operating systems (virtual or real) and application codes. 

An AP may also have many calculus specialised 
functions (such as GPU, DSP, cryptography, …), 
an evolved peripheral set and an internal 
memory. However the latter is not capable of 
containing the operating system but has a 
bootloader instead. 

As a consequence a DDR volatile main memory 
and a remanent mass storage (MMC, eMMC, 
SDcard) must both be added as external 
components.

https://beagleboard.org/black 

AP:
TI AM3358
ARM Cortex A8

4 GB eMMC
(Flash)

512 MB
DDR3 RAM
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AP – APPLICATION PROCESSOR

     Architecture

APs are fully operational systems in an integrated circuit (heterogeneous architecture). 

Nonetheless main memory must be added as an external component.

Buses

AP

Internal 

memory

DSP

Peripherals

specialized 

fonctions

Memory 

controller

GPU

CPU

L2 cache

L1 cache

CPU

L1 cache
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AP – APPLICATION PROCESSOR

     Comparison of control processors

Contrary to MCUs, which contain all hardware services in a single chip, application 
processors require an important unitary cost and are therefore no the best solution for 
low-cost or large-quantities productions.

Yet if the application needs evolved interface and/or connectivities, MCUs are not 
suitable any more because of their low performances. APs then become the best 
solution.

GPP
+ RAM

+ hard drive
+ mother board

AP
+ RAM
+ MMC
+ PCB

MCU

+ PCB

$$$ $$ $
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AP – APPLICATION PROCESSOR

     Architecture

Observe the point of a heterogeneous architecture for video games applications.
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AP – APPLICATION PROCESSOR

     Qualcomm Snapdragon solution

The market leader is Qualcomm.

This is due to its Snapdragon family dedicated to mobile phones market.
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AP – APPLICATION PROCESSOR

     Qualcomm Snapdragon solution

Internal architecture and hardware functionalities of the Qualcomm Snapdragon 810.
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AP – APPLICATION PROCESSOR

     Solution ARM : Cortex-A

Les deux leaders du marché hors terminaux mobiles sont Texas Instruments et 
Freescale, deux fondeurs offrant de larges communautés d’utilisateurs.

Observons la 
famille i.MX6 
de Freescale :
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AP – APPLICATION PROCESSOR

     ARM Cortex-A solution

Outside of the mobile phones market, the ARM Cortex-A is the leading architecture in 
embedded markets. The ‘A’ stands for “Application”.
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GPU – GRAPHICS PROCESSING UNITS

     Applications

GPUs (Graphics Processing Unit) are specialised co-processors dedicated for high 
intensity calculus and processing. 

The term of GPGPU (General Purpose GPU) appeared in the last few years. It relates to 
massive computing in very sense. Applications are diverse: finance, research, science, 
medical imagery, video games, … 

http://www.nvidia.com/content/gpu-applications/PDF/gpu-applications-catalog.pdf 
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GPU – GRAPHICS PROCESSING UNITS

     Architecture

GPU possess a shared NUMA (Non Uniform Memory Access), allowing a cloning of data 
to be processed and a execution parallelism. They integrated a massively parallel 
architecture.

Shared memory Shared memory Shared memory

Cache

I/O controller

Memory 

controller

Memory 

controller

GPGPU

CPU

Memory 

controller
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: the Tesla P100 board

Let’s take a look at the Tesla P100 board characteristics. It has been produced by Nvidia 
in 2016 and it is dedicated to the then most advanced data centres.

The GPU is a Nvidia GP100.

https://www.nvidia.com/fr-fr/data-center/tesla-p100/ 
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: Pascal architecture
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: GP100 GPU architecture
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: GP100 GPU architecture

The Nvidia GP100 GPU in a nutshell

● 6 Graphics Processing Clusters

● 30 Texture Processing Clusters (5 / GPC)

● 60 Streaming Multiprocessors (2 / TPC)

● 3840 single precision cores (64 / SM)

● 1920 double precision units (32 / SM)

● 240 texture units (4 / SM)

● 8 memory controllers

● 8 x 512 KB = 4096 KB L2 cache

● 4 pairs that control HBM2 DRAM

Note : the Tesla P100 board uses only 56 SMs
out of the 60 available in the GP100 GPU. TSMC
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: GP100 GPU architecture

GPUs integrate a large 
number of classical pipeline 
CPUs but with vectorial SIMD 
execution units.

EU = Execution Unit
SIMD = Single Instruction Multiple Data

GPC     = Graphics Processing Cluster
TCP     = Texture Processing Cluster
SM     = Streaming Multiprocessor
(multithreaded processor)

Warp     = thread of SIMD instructions
DP     = Double Precision
LD/ST   = Load/Store
SFU      = Special Function Unit
Tex     = Texture
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: Telsa P100 board

Communication and interconnection systems (Tesla P100)
4 NVlink / GPU
40 GB/s / NVlink
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GPU – GRAPHICS PROCESSING UNITS

     Nvidia products: application example

Example of an application using the Nvidia Tesla P100 board.
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GPU – GRAPHICS PROCESSING UNITS

     Markets

The undisputed leader of the GPU/IGP market is Intel, thanks to their graphics co-
processors IGPs (Integrated Graphics Units) embedded in a wide range of their GPPs 
(more than 70% of market shares in 2016).
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GPU – GRAPHICS PROCESSING UNITS

     Markets

Nonetheless the leader of high-performance external solutions in the American 
company Nvidia.

Tesla P100Tesla K20C
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DSP – DIGITAL SIGNAL PROCESSOR

     Applications

DSPs (Digital Signal Processors) are dedicated to applications with Digital Signal 
Processing (fr: Traitement numérique du signal).
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DSP – DIGITAL SIGNAL PROCESSOR

     Architecture

DSPs are very close to MCUs: they are autonomous systems.
However their CPU is specialised for signal processing and calculus.

DSP-oriented 

CPU

Main

memory

Bus

Peripherals

specialized

functions

DSP

I/O

Caution:
P = Processor

Caution:
P = Processing
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DSP – DIGITAL SIGNAL PROCESSOR

     Architecture

DSP’s CPUs possess execution units dedicated for MAC (Multiply Accumulate) or SOP 
(Som Of Products) operations. These are elementary operations met in almost every 
signal processing algorithm.
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DSP – DIGITAL SIGNAL PROCESSOR

     Architecture

CPU with MAC/SOP dedicated execution units. The ISA (Instruction Set Architecture) 
contains specific instructions for working with these EUs.

CPU
Main

memory

Bus

Peripherals

specialized

functions

DSP

I/O

MAC
Specialised 

execution unit

MAC
Specialised 

execution unit

MAC
Specialised 

execution unit

MAC = SOP

MAC : Multiply-Accumulate
SOP :  Som of Products

ISA : Instruction Set Architecture
EU : Execution Unit
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C5500

This is the Texas Instruments C5500 DSP, one of the leading DSP solutions.
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C5500

Here is an extract of the C5500 datasheet,

with a summary of its characteristics.

https://www.ti.com/lit/ds/symlink/tms320c5533.pdf 
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C6600

Let’s switch to the Keystone C6600. This Texas Instruments DSP is one of the highest 
performances in the current market.
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C6600

Texas Instruments C6600 CorePac.

 

Memory configurable as cache memory or 
addressable SRAM with no bandwidth loss.

UMA or NUMA models configurable for 
each core.
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C6600

C6600 core with:

- 14-stage VLIW hardware pipeline 
(Very Long Instruction Word)

- software pipeline with a max 
width of 8 instructions
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: C6600

These DSPs are designed for both parallel and daisy-chain work.

Parallel configuration is suitable for massive parallel processing whereas daisy-chain 
configuration is more suitable for deep processes algorithms.
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DSP – DIGITAL SIGNAL PROCESSOR

     Solutions Texas Instruments : C6600

Advantage of using daisy-chain configuration:
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: Keystone II

That’s not all, TI also offers the Keystone II family. It consists of an AP-SoC with 
application processors dedicated for digital signal processing applications.

The main target is the telecommunications area.
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DSP – DIGITAL SIGNAL PROCESSOR

     Texas Instruments products: Keystone II
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DSP – DIGITAL SIGNAL PROCESSOR

     Actors

The historical and current leader is by far Texas Instruments.

TI was the first company to design DSP in 1982.

TMS32020 (1982)

Up to 8,77 MIPS

TMS320C6678 (2010)

Up to 256 GMACS
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DSP – DIGITAL SIGNAL PROCESSOR

     Actors

Here is the range of Texas Instruments processors.

http://processors.wiki.ti.com/index.php/Main_Page 
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DSP – DIGITAL SIGNAL PROCESSOR

     Actors
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EXECUTION MODELS

Classifying processors according to their execution model

SISD – SIMD – MISD – MIMD
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EXECUTION MODELS

     Disclaimer

The next slides are not intended for proper 
lecturing.
However you’ll hear those terms quite a 
lot, so here are a few slides about 
execution models.
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EXECUTION MODELS

     Flynn’s classification

Flynn’s classification (1972)

SIMD

MIMD

SISD

MISD

Multiple

Data stream

Simple

M
u
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ip

le
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st
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ct

io
n

 s
tr

e
a

m

S
im

p
le

CPU

Simple data stream : each operand contains only one piece 
of data (one memory cell per operand).

Multiple data streams : each operand contains multiple 
pieces of data (a fixed-size array per operand).

Single instruction stream : the CPU can execute one 
instruction at once (sequential execution).

Multiple instruction streams : the CPU can execute multiple 
instructions at once, either using data parallelism (e.g. 
forall loop) or using control parallelism (e.g. parallel 
sections).
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EXECUTION MODELS

     Flynn’s classification

SISD – Single Instruction stream, Single Data stream

EU

Data stream

In
st

ru
ct

io
n

 s
tr

e
a

m

Execution Unit

CPU

The processor execute one instruction at once, each 
instruction operand containing a single memory cell.

This is the typical mono-processor architecture:

 → Von Neumann architecture

  → MCUs and old GPP generations

  → Sequential processor (no parallelism)

 → Scalar processor

  → A single piece of data (a single memory cell) for each operand 
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EXECUTION MODELS

     Flynn’s classification

SISD – Single Instruction stream, Single Data stream

Example: TI C6600 assembly language
Adding two floats

; Single Precision ADD
ADDSP A17, A5, A5

; Result:
; A5 = A5 + A17

Example canonical C: 
Adding two floats

float a, b ;

// Initialising a and b ...

a = a + b ;



103

EXECUTION MODELS

     Flynn’s classification

SIMD – Single Instruction stream, Multiple Data streams

EU

Data stream

In
st

ru
ct

io
n

 s
tr

e
a

m

EU EU

CPU

The same instruction will be executed by multiple EUs, 
each processing its own piece of data. It means the 
whole CPU will execute a single instruction on multiple 
pieces of data.

Parallel architecture with centralised control unit:

 → Vectorial processor

  → GPU

 → Intel SSE and AVR instructions set architecture for x86

 SSE = Streaming SIMD Extension (SSE, SSE2, SSE3, SSE4)

 AVR = Advanced Vector Extensions (AVX, AVX2, AVX512)
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EXECUTION MODELS

     Flynn’s classification

SIMD – Single Instruction stream, Multiple Data streams

Example: TI C6600 assembly language
Adding two couples of floats

; Dual ADD Single Precision
DADDSP A21:A20, A25:A24, A25:A24

; Result:
; A25 = A25 + A21
; A24 = A24 + A20

; Just like the SSE for Intel, the C6600
; DSP has a C extension (C functions) 
; for vectorial instructions

Example: x86 SSE C, adding four couples of floats

float A[N], B[N], C[N] ;

for( int i = 0 ; i < N ; i += 4 ) {
  __m128 reg_b = _mm_load_ps( &B[i] );
  __m128 reg_c = _mm_load_ps( &C[i] );
  __m128 reg_a = _mm_add_ps( reg_b , reg_c ) ;
  __mm_store_pd( &A[i] , reg_a );
}
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EXECUTION MODELS

     Flynn’s classification

MISD – Multiple Instruction streams, Single Data stream

EU

Data stream

In
st

ru
ct

io
n

 s
tr

e
a

m

EU

EU

CPU

Each EU execute its own instruction, with single pieces 
of data.

Few practical applications

 → code redundancy (for detection of execution errors)

 → VLIW processors (Very Long Instruction Word)

 e.g. C66xx Texas Instruments DSP
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EXECUTION MODELS

     Flynn’s classification

MISD – Multiple Instruction streams, Single Data stream

Example: TI C6600 assembly language
Simultaneously adding and multiplying

; ADD Single Precision
; MULTIPLY Single Precision
   ADDSP A3, A9, A3
||  MPYSP B3, B9, B3

; The pipes (||) explicitly indicate that
; instructions must be executed in parallel
; (use of software pipeline)

; Result
; A3 = A9 + A3
; B3 = B9 + B3
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EXECUTION MODELS

     Flynn’s classification

MIMD – Multiple Instruction streams, Multiple Data streams

EU

Data stream

In
st

ru
ct

io
n

 s
tr

e
a

m

EU

EU

CPU

Each EU executes its own instructions flow on their own 
data flow.

Execution Unit can be grouped as a cluster.

Parallel architectures with independent control units

 → Super-scalar processors

  → Any modern GPP: x86-x64 (CISC), Cortex-A (RISC)

 → Includes use of SPMD (Single Program, Multiple Data)
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EXECUTION MODELS

     Flynn’s classification

MIMD – Multiple Instruction streams, Multiple Data streams

Example: C and OpenMP 
Parallelisation of for loop

#pragma omp parallel reduction(+:acc)
{

  #pragma omp for schedule(static)
  for( k = 0; k < size; k ++ ) 
  { 
    acc += A[i * size + k] * x[k];  
  }
}

Example: TI C6600 assembly language
Simultaneously adding and multiplying two 
different couples of data

; Dual ADD Single Precision
; Dual SUBSTRACT Single Precision
   DADDSP A21:A20, A25:A24, A25:A24
||  DSUBSP B25:B24, B23:B22, B23:B22

; The pipes (||) explicitly indicate that
; instructions must be executed in parallel
; (use of software pipeline)

; Result
; A25 = A25 + A21
; A24 = A24 + A20
; B23 = B25 - B23
; B22 = B24 - B22
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Choosing a 
specialized CPU
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CHOOSING A HIGH-PERFORMANCE CPU

Software: Applications + System

The objective of an application is to fulfill specifications (or requirements).
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CHOOSING A HIGH-PERFORMANCE CPU

Application

About 90 % of the time, the processing consists of a simple supervision.

 → Opt for MCU, AP or GPP architectures

  Processing:

Test    if(…)→
Action  function(…)→

Sleep

S
e

q
u

e
n

ti
a

l

Event

4

CHOOSING A HIGH-PERFORMANCE CPU

Algorithm

From time to time the function to process might be an algorithm, 

i.e. apply a processing to a certain amount of data (information).

Algorithm examples: search, sort, digital signal processing (audio, radar, comms, …), ...

AlgorithmData Data
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CHOOSING A HIGH-PERFORMANCE CPU

Algorithm

The first choice of processor should always be a general-purpose processor.

However if it does not match the specifications, it is wise to switch to a processing-
specialized architecture so that we can:

● Reduce the processing time

● Reduce the code size and/or its memory footprint

Note that switching to a specialized processor 
should be justified with measurements.
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CHOOSING A HIGH-PERFORMANCE CPU

DFT algorithm example

Take for example the DFT algorithm:

● Each product is independent from another

●  → Parallelism available!

● Same for the processing every single frequency sample

S (k ) = ∑
n=0

N−1

s(n) × e
− j 2π k

n

N

Sum Product
Sum Of Product (SOP)
Multiply-Accumulate (MAC)

For ONE 
frequency 

sample
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CHOOSING A HIGH-PERFORMANCE CPU

DFT algorithm example

Σ Σ s x e

M
A
T
H

S
O
F
T

for( – )
for( – )

s * e

N-1

0

N-1

0
x1024

x1024

N N
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CHOOSING A HIGH-PERFORMANCE CPU

CPU architecture selection

Finally, choose the CPU according to your needs.

DSP: low-power, low-cost, very low-level 
development (C, asm)

GPU: high-power, high-cost, high-level 
development (C++, OpenMP, Cuda, …), high-
parallelism potential

MPPA: Massively Parallel Processor Array, not 
widespread yet, but huge potential (dispatch 
cores to specific algorithms).
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Chapter 3

TI C6678’s
Architecture

TMS320C6678 PROCESSOR

Processor and Core specifications
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TMS320C6678 PROCESSOR

     Processor Architecture

The TI C6600 is a multicore DSP with a 
homogeneous CPU architecture. 

It includes 8 RISC-like VLIW CPUs that can 
be clocked up to 1.4 GHz.

 → 44.8 GMAC/core for fixed point @1.4 GHz

 → 22.4 GFLOP/core for floating point @1.4 GHz

TMS320C6678 functional block diagram

4

TMS320C6678 PROCESSOR

     Core Architecture

The C66x CorePac consists of several components:

• The C66x DSP and associated C66x CorePac core

• Level-one and level-two memories (L1P, L1D, L2)

• Data Trace Formatter (DTF)

• Embedded Trace Buffer (ETB)

• Interrupt Controller

• Power-down controller

• External Memory Controller

• Extended Memory Controller

• A dedicated power/sleep controller (LPSC)

TMS320C66x CorePac DSP Block Diagram
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TMS320C6678 PROCESSOR

     Core Architecture

Each core has its own cache memories :

● 32 kB L1P cache memory

● 32 kB L1D cache memory

● 512 kB L2 cache memory

“Why Use Cache?”
Texas Instruments, 
SPRUGY8-November 2010
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TMS320C6678 PROCESSOR

     Processor Architecture

Also, all cores can access to a 4 MB multicore 
shared memory (MSM), which can be configured 
either as a cache memory or as an addressable 
SRAM.
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TMS320C6678 PROCESSOR

     Core Architecture

The IDMA (Internal Direct Memory Access) 
is a DMA controller local to the CorePac. 

It can be configured and is fully accessible 
by the developer. 

It can handle data transfer between local 
memories, or between peripheral 
configuration space (CFG) and local 
memories.

Local transfers to the CPU are determinist.

8



C6600 HARDWARE PIPELINE
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C6600 HARDWARE PIPELINE

 

Reminder: a CPU is a sequential machine, but it can process simultaneously several 
instructions thanks to the stages of its hardware pipeline.

DATA BUS

PROGRAM MEMORY

DATA MEMORY

CPU FETCH
DECODE
EXECUTE
WRITEBACK

INSTRUCTION BUS
PROGRAM MEMORY 

ADDRESS BUS

DATA MEMORY 
ADDRESS BUS

Data flow

Binary instructions flow
(thread)
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C6600 HARDWARE PIPELINE

 

The C6600 pipeline has 16 stages (called phases)

12

C6600 HARDWARE PIPELINE

 

CPUs from the C6600 family are 
equipped with a VLIW (Very Long 
Instruction Word) hardware pipeline. 

It can process up to 8 instructions at 
once with its 8 execution units.

Pipeline Phases Block Diagram
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C6600 HARDWARE PIPELINE

     FETCH stage

The FETCH stage is divided into four phases:

● PG: Program address generate

● PS: Program address send

● PW: Program access ready wait

● PR: Program fetch packet receive

Each fetch packet is 8-word long

(8 x 32 bits = 256 bits)

Actual 
loading

14

C6600 HARDWARE PIPELINE

     FETCH stage

Each instruction has a 32-bit fixed size (RISC-like instruction set).

The very last bit of each instruction is named P (Parallel) and is set to 0 or 1 either 
during the compilation phase or directly by the developer (in assembly language). 

By reading this bit, the FETCH stage knows exactly how many instructions to search for, 
with a maximum of 8.
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C6600 HARDWARE PIPELINE

     DECODE stage

With instructions arriving by packets, the decoding stage takes two phases.

1. The Dispatch phase redirects the instructions to their dedicated Execution Unit.

2. Each Execution Unit has its proper decoding unit.

Decode

Dispatch
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C6600 HARDWARE PIPELINE

     EXECUTION stage

The VLIW execution stage has 8 SIMD Execution Units (or Functional Units). 

The Execution Units are labeled .L1, .S1, .M1, .D1, .L2, .S2, .M2, .D2, and some 
instructions are EU-specific.

They are split into two symmetrical sides, each side having its own 32-bit register file.
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C6600 HARDWARE PIPELINE

     EXECUTION stage

Each EU has its own VLIW pipeline.
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C6600 HARDWARE PIPELINE

     EXECUTION stage

Instructions with a execution time greater than one cycle is followed by a delay slot, 
written with a NOP instruction (No Operation). 

The NOP instruction corresponds to the time of the instruction travelling through the 
current Execution Unit.

Label:

LDW A0*, A2

NOP 4

LDW A1*, A3

NOP 4

MPYSP A2,  A3, A2

 || MV A0,  A1

NOP 3

Instruction 
in parallel

Delay 
slot
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C6600 HARDWARE PIPELINE

     EXECUTION stage

As an example, here is the documentation for the MPYSP instruction.

Instruction Opcode

Side

Parallel

Execution 
unit

20



PROGRAMMING A VLIW CPU

22

Let’s see how a VLIW (Very Long Instruction Word) CPU works by focusing on the 
execution units. We’ll start with a canonical assembly code.

PROGRAMMING A VLIW CPU

Example code

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3

FADDSP  .S1 A0, A1, A0

NOP 2

MV  .D1 A0, A1

MV .D2 B9, B7

13 CPU cycles
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Now sort the instructions according to the data dependencies.

We’ll get three instruction branches.

PROGRAMMING A VLIW CPU

Rewriting code

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3

FADDSP  .S1 A0, A1, A0

NOP 2

MV  .D1 A0, A1

MV .D2 B9, B7

8 CPU cycles

4 CPU cycles

1 CPU cycle

24

In theory, these branches can be executed in parallel.

PROGRAMMING A VLIW CPU

Rewriting code

FADDSP  .S1 A0, A1, A0

NOP 2

MV  .D1 A0, A1

8 CPU cycles

4 CPU cycles

1 CPU cycle

MV .D2 B9, B7

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3
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However, we must pay attention to functional dependencies!

PROGRAMMING A VLIW CPU

Rewriting code

FADDSP  .S1 A0, A1, A0

NOP 2

MV  .D1 A0, A1

8 CPU cycles

4 CPU cycles

1 CPU cycle

MV .D2 B9, B7

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3

Same unit 

26

We shall rewrite the code (refactoring) to make parallelism possible.

PROGRAMMING A VLIW CPU

Rewriting code

FADDSP  .S1 A0, A1, A0

NOP 3

MV  .D1 A0, A1

8 CPU cycles

4 CPU cycles

1 CPU cycle

MV .D2 B9, B7

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3
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Here are the canonical and optimized versions of the same code.

PROGRAMMING A VLIW CPU

Rewriting code

MPYSP .M1 A2, A3, A4

NOP 3

ADDSP .S1 A2, A4, A2

NOP 3

FADDSP  .S1 A0, A1, A0

NOP 2

MV  .D1 A0, A1

MV .D2 B9, B7

Canonical asm – 13 CPU cycles

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

Optimized asm – 8 CPU cycles
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

EXECUTE

FETCH

DISPATCH / DECODE
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

MPYSP

EXECUTE

FETCH

DISPATCH / DECODE
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

NOP

MPYSP

EXECUTE

FETCH

DISPATCH / DECODE
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

NOP

NOP

EXECUTE

FETCH

DISPATCH / DECODE

MPYSP
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

FADDSP

NOP

EXECUTE

FETCH

DISPATCH / DECODE

MPYSP
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

ADDSP

FADDSP

EXECUTE

FETCH

DISPATCH / DECODE

MPYSP

34

PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

NOP

ADDSP
FADDSP

EXECUTE

FETCH

DISPATCH / DECODE

MPYSP
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

FADDSP

NOP

NOP
ADDSP

EXECUTE

FETCH

DISPATCH / DECODE
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

ADDSP
FADDSP

MV

NOP

EXECUTE

FETCH

DISPATCH / DECODE

MV
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

ADDSP
FADDSP

MV

EXECUTE

FETCH

DISPATCH / DECODE

MV
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

ADDSP

EXECUTE

FETCH

DISPATCH / DECODE

MV MV
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

ADDSP

EXECUTE

FETCH

DISPATCH / DECODE

MV MV
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PROGRAMMING A VLIW CPU

Code execution

...

MPYSP .M1 A2, A3, A4

NOP 2

FADDSP  .S1 A0, A1, A0

ADDSP .S1 A2, A4, A2

NOP 2

MV  .D1 A0, A1

|| MV .D2 B9, B7

...

Optimized asm – 8 CPU cycles CPU

DATA MEMORY

.S1 .L1 .M1 .D1 .D2 .M2 .L2 .S2

DATA MEMORY

EXECUTE

FETCH

DISPATCH / DECODE
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PROGRAMMING A VLIW CPU

VLIW CPU properties

One particularity of VLIW processors is that their assembly code (and binary code as 
well) is out of order in the program memory, but they come out of the pipeline in order.

This very simple CPU has a very good performances/Watt ratio.

However, intelligence and skills belong to the developper and the toolchain.
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PROGRAMMING A VLIW CPU

VLIW CPU properties

VLIW CPU

● Intelligence bring by toolchain and engineer

● Memory program code is out of order

● Execution In Order

● Determinist

● Excellent performance/consumption ratio

Superscalar CPU

● Intelligence lies within the execution stage

● Memory program code is in order

● Execution is Out Of Order (OOO execution)

● Not determinist

● Bad performance/consumption ratio
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PROGRAMMING A VLIW CPU

VLIW CPU properties

On the one hand superscalar CPUs are designed to execute generic code with almost 
no optimisation and that includes lots of branches and tests. Keyword is genericity.

On the other hand VLIW CPUs must run target-dependant code in order to use their 
maximum capability. However this means architecture-specific code (no portability).

TI DSPLIB, FFT algorithm, floating point
Optimised implementation (intrinsec functions)
 → NOT PORTABLE

TI DSPLIB, FFT algorithm, floating point
Canonical implementation
 → PORTABLE
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PROGRAMMING A VLIW CPU

VLIW CPU properties

If one wants to use the full capability of a processor, he must master the hardware 
architecture as well as associated developping tools (i.e. toolchain).

Also one must be able to use math and rewrite the algorithm (and its implementation) 
with the aim of a code acceleration.

As a matter of fact, the most performant codes are most of the time not portable.
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Chapter 4

Lab’s example 
algorithm

2

LAB’S EXAMPLE ALGORITHM

Discrete convolution

Lab sessions will use a well known algorithm: the discrete convolution.

This algorithm has a very simple structure, but it is very difficult to accelerate without 
mathematical refactoring.
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LAB’S EXAMPLE ALGORITHM

Discrete convolution

Let’s have a look at the mathematical definition of the discrete convolution

Where:

● x() is the input samples vector

● y() is the output samples vector

● a() is the coefficients vector

● Y is the output vector size

● N is the number of coefficients

● k is the index of the current sample

y (k ) =∑
k=0

Y

∑
j=0

N

a( j)⋅x (k− j)

4

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Before being coded in C onto the wanted processor, the algorithm is usually validated 
with prototyping and simulation tools, such as Matlab/Simulink.

Validating the algorithm consists in coding its canonical implementation and check the 
input and output vectors values.
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LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Here is the Matlab implementation of the discrete convolution algorithm.

This code is given with lab materials

6

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Observe some of the outputs suggested by Matlab sources, for a 64th-order FIR filter.

Matlab sources given with lab materials
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LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Once the algorithm has been validated, it can be implemented in the processor.

First make a canonical C implementation, using IEEE-754 single-precision floats.
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LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Another canonical C implementation.

This one is given by Texas Instruments in its library dsplib.
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LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Another canonical C implementation, from the Texas Instruments dsplib.

But this time, it uses 16-bit signed integers with the Q1.15 format.

10

LAB’S EXAMPLE ALGORITHM

Goal

The main goal of the lab sessions is to present a generic methodology for optimizing 
algorithms for a specific architecture.

In our case, we’ll optimize a discrete convolution algorithm for a TI C6678 DSP.
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Instruction fields

Let’s see the different fields of an instruction line in assembly language for the Texas 
Instruments C6600 architectures.

Note that some fields are specific to VLIW architectures.

label:   || [cond] Instr .Unit Operands ;comment

Parallel
(with prev. Instr.)

Condition
(each instr. can be)

Instruction unit
(1 of the 8)

With format:
src, src, dest

4
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Instruction fields

Remember that all fields of an instruction in assembly language correspond to a field in 
the binary code of the instruction (except for the label and the comment).

See for instance the MPYSP instruction.

Instruction Opcode
(MPYSP specific)

Side

Parallel

Condition 
(A1, A2, B0, B1, B2)

Operands
(one of 32 registers)
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Execution units

In order to ease the understanding of the C6600 Instruction Set Architecture, we’ll look 
at the effects of the assembly instructions onto the execution stage.

6

C6678 INSTRUCTION SET ARCHITECTURE

Execution units

The C6000 CPU has a Load-Store architecture.

This means that some execution units (.D1 and .D2) are dedicated to memory access, 
and both of them have a direct access to the L1 cache memory (64-bit bus).

The other execution units are used for control and processing.

Data bus (64-bit)
L1 cache  Reg file A/B←→

Memory address bus
(32-bit)

.D1/.D2  L1 cache →
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Addressing modes

Only 3 addressing modes are supported by the C6000 ISA.

Remind that addressing modes correspond to data manipulation strategies , as used by 
the instructions.

Being a calculation processor, the C6000 CPU heavily uses register addressing mode.

● Register addressing

● 324 instructions (full ISA)

● Indirect addressing

● 18 instructions (load/store instructions)

● Immediate addressing

8
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Presentation

For the remaining part of this lecture, we’ll translate the C algorithm into a C6678 
assembly language program.

The canonical C version of the program is on the next slide.

For educational purpose, we will ignore the delay slots that are 
associated to instructions execution time.

The absence of the NOP instructions will facilitate the 
understanding of the canonical assembly program.

Do not forget to add the delay slots when programming the 
target DSP!
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Canonical C implementation

This is the algorithm that will be studied during the lab sessions.

It’s a canonical C implementation, using IEEE-754 single-precision floats.
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Registers use

Registers used for passing parameters through function call:

We decide to use those registers:

● i = B0

● j = A1

● yk (temp) = A5

void main(void)
{

fir_sp( xk_sp, a_sp, yk_sp, A_LENGTH, YK_LENGTH );

while(1);
}

A4 B4 A6 B6 A8

Returned 
value in A4

B3 register used to 
save return address

● xk_sp = A19

● a_sp = B19

● xk = A9

● a = B9

See “TMS320C6000 Optimizing Compiler V7.6” User’s guide, Chapter “7.3 Register conventions”
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Multiplication-Accumulation

The easiest way to translate the C  into assembly 
language is to start from the main operation, 
inside the inner loop.

Like many other digital signal processing 
algorithms, the discrete convolution uses MAC 
(Multiply-Accumulate) or SOP (Sum Of Products) 
instructions.

First let’s look at the MPYSP instruction.

 fir_sp_asm:

MPYSP .M1  A9,  B9, A17

14
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Multiplication-Accumulation

The current example shows a cross path (i.e. the 
two sources are not from the same side).

This brings some limitations:

● The destination register and the execution 
unit must be on the same side

● Only one source register can be on the other 
side

● Add the ‘x’ suffix when specifying the 
execution unit

 fir_sp_asm:

MPYSP .M1x A9,  B9, A17
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Multiplication-Accumulation

Now we can use an addition instruction.

Well done!

You just implemented

a MAC operation!

 fir_sp_asm:

MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

16
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Multiplication-Accumulation

Use of execution units:

MPYSP

ADDSP
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Data management

Move data from a CPU register to another one.  fir_sp_asm:
MV .L1 A8, B0

MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5
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Data management

Before performing the MAC, we must load the 
cells values (stored in the L1 cache memory) into 
CPU registers.

We must use one of the LDx (load) instructions:

● LDB,  B = Byte      = 1 byte  = char

● LDH,  H = Half-word   = 2 bytes = short int

● LDW,  W = Word      = 4 bytes = int, float

● LDDW, DW = Double-Word = 8 bytes = long, double

The .D1 and .D2 executions units are dedicated 
to ST and LD instructions only.

 fir_sp_asm:
MV .L1 A8, B0

LDW  .D1 *A19,  A9
LDW  .D2 *B19,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5
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Data management

Use of execution units:

MPYSP

ADDSP

MV

LDx / STx

20
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Data management

Note that a pointer-like style is used.

In this example case, A19 and B19 registers 
contain each an address. The ‘*’ character before 
the register name indicates the use of indirect 
addressing mode.

This is equivalent to the use of pointers in C.

 fir_sp_asm:
MV .L1 A8, B0

LDW  .D1 *A19,  A9
LDW  .D2 *B19,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5
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Data management

Similarly to the pointers in C language, registers used in indirect addressing mode 
support pre- and post-incrementations.

Also, load and store operations can be indexed with the [] notation, like arrays in C.
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Data management

To summarize:

The A19 and B19 registers contain the address 
of the current cell of a[] and xk[] arrays.

The two LDW instructions load 4 bytes from the 
L1 cache memory to the CPU registers A9 & B9.

The address value contained in A19 and B19 
registers are incremented afterward, making 
these registers pointing to the next cell.

 fir_sp_asm:
MV .L1 A8, B0

LDW  .D1 *A19++, A9
LDW  .D2 *B19++, B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

24
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Control and branch

The C6000 family historically supported only one 
branch instruction: the B (branch) instruction.

It allows to perform function calls as well as all 
known control structures (if, for, while, …).

The B instruction uses .S1 and .S2 execution 
units.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

    B  .S1 fir_sp_asm_l2

26
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Control and branch

Use of execution units:

MPYSP

ADDSP

MV

LDx / STx

B
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Control and branch

A condition can be added to the execution of an 
instruction.

Five registers (A1, A2, B0, B1, B2) can be used as 
condition values.

Syntax:

●  [R] = instruction executed if R ≠ 0

● [!R] = instruction executed if R = 0

All instructions can be executed conditionally.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

   [A1] B  .S1 fir_sp_asm_l2
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Control and branch

Implement the internal loop’s counter.  fir_sp_asm:
MV .L1 A8, B0

MV  .L1 B6, A1

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB  .L1 A1,  1,  A1
   [A1] B  .S1 fir_sp_asm_l2
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Control and branch

Implement the external loop.  fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:

MV  .L1 B6, A1

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB  .L1 A1,  1,  A1
   [A1] B  .S1 fir_sp_asm_l2

[B0] SUB  .L2 B0, 1, B0
[B0] B  .S1 fir_sp_asm_l1
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Control and branch

The return address of a function is always given 
by the calling function through the B3 register.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:

MV  .L1 B6, A1

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB  .L1 A1,  1,  A1
   [A1] B  .S1 fir_sp_asm_l2

[B0] SUB  .L2 B0, 1, B0
[B0] B  .S1 fir_sp_asm_l1

B B3
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Final version

Final version

Without the required delay slots!

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:
ZERO  .L1 A5
MV  .L1 B6, A1
MV  .L1 A4, A19
MV  .L1 B4, B19

 fir_sp_asm_l2:
LDW  .D1 *A19++,  A9
LDW  .D2 *B19++,  B9
MPYSP .M1x A9,  B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB  .L1 A1,  1,  A1
   [A1] B  .S1 fir_sp_asm_l2

STW  .D1 A5,   *A6++
ADD  .L1 A4, 4, A4  

[B0] SUB  .L2 B0, 1, B0
[B0] B  .S1 fir_sp_asm_l1

B B3



GLOSSAIRE
SYSTÈMES EMBARQUES 

A

• ABI : Application Binary Interface
• ADC : Analog to Digital Converter
• ALU : Arithmetic and Logical Unit
• AMD : Advanced Micro Devices
• ANSI : American National Standards Institute
• AP : Application Processor
• API : Application Programming Interface
• APU : Accelerrated Processor Unit
• ARM : Société anglaise fabless concevant des CPU RISC 32bits
• ASCII : American Standar Code for Information Interchange
• ASIC : Application Specific Integrated Circuit

B

• BP : Base Pointer
• BSL : Board Support Library
• BSP : Board Support Package

C

• CCS : Code Composer Studio
• CEM : Compatibilité ElectroMagnétique
• CISC : Complex Instruction Set Computer
• CMS : Composant Monté en Surface
• CPU : Central Processing Unit
• CSL : Chip Support Library

D

• DAC : Digital to Analog Converter
• DDR : Double Data Rate
• DDR SDRAM: Double Data Rate Synchronous Dynamic Random Access 

Memory
• DMA : Dual Inline Package (boîtier de composant)
• DMA : Direct Memory Access
• DSP : Digital Signal Processor
• DSP : Digital Signal Processing

E

• EDMA : Enhanced Direct Memory Access
• EUSART : Enhanced Universal Synchronous Asynchronous Receiver 

Transmitter
• EMIF : External Memory Interface
• EPIC : Explicitly Parallel Instruction Computing



GLOSSAIRE
SYSTÈMES EMBARQUES 

F

• FPU : Floating Point Unit
• FLOPS : Floating-Point Operations Per Second
• FMA: Fused Multiply-Add

G

• GCC : Gnu Collection Compiler
• GLCD : Graphical Liquid Crytal Display
• GNU : GNU's Not UNIX
• GPIO : General Purpose Input Output
• GPGPU : General Purpose GPU
• GPP : General Purpose Processor ou MPU
• GPU : Graphical Processing Unit

I

• IA-64 : Intel Architecture 64bits
• I2C : Inter Integrated Circuit
• IC : Integrated Circuit
• ICC : Intel C++ Compiler
• ICC : Interface Chaise Clavier (main problem root)
• IDE : Integrated Development Environment
• IDMA : Internal Direct memory Access
• IHM : Interface Homme Machine
• IRQ : Interrupt ReQuest
• ISR : Interrupt Software Routine
• ISR : Interrupt Service Routine

L

• L1D : Level 1 Data Memory
• L1I : Level 1 Instruction Memory (idem L1P)
• L1P : Level 1 Program Memory (idem L1I)
• Lx : Level x Memory
• LCD : Liquid Crytal Display
• LRU : Least Recently Used



GLOSSAIRE
SYSTÈMES EMBARQUES 

M

• MAC:  Multiply Accumulate
• MCU : Micro Controller Unit
• MFLOPS : Mega Floating Point Operations Per Second
• MIMD : Multiple Instructions Multiple Datas
• MIPS : Mega Instructions Per Second
• MISD : Multiple Instructions Single Data
• MMACS : Mega MAC’s Per Second (cf. définition MAC ci-dessus)
• MMU : Memory Managment Unit
• MPLABX : MicrochiP LABoratory 10, IDE Microchip
• MPU : Micro Processor Unit ou GPP
• MPU : Memory Protect Unit
• MPPA : Massively Parallel Processor Array

O

• OS  : Operating System

P

• PC : Program Counter
• PC : Personal Computer
• PCB : Printed Circuit Board
• PIC18 : Famille MCU 8bits Microchip
• PIC : Programmable Interrupt Controller
• PLD : Programmable Logic Device
• POSIX : Portable Operating System Interface (norme IEEE 1003)
• PPC : Power PC

R

• RAM : Random Access Memory
• RISC : Reduced Instruction Set Computer
• RS232 : Norme standardisant un protocole série asynchrone
• RTOS : Real Time Operating System
• RTS :  Real Time System



GLOSSAIRE
SYSTÈMES EMBARQUES 

S

• SDK :  Software Development Kit
• SIMD :  Single Instruction Multiple Date
• SIP :  System In Package
• SOB :  System On Board
• SOC :  System On Chip
• SOP :  Sums of products
• SP :  Stack Pointer
• SP :  Serial Port
• SPI  :  Serial Peripheral Interface
• SRAM : Static Random Access Memory
• SSE : Streaming SIMD Extensions
• STM32 : STMicroelectronics 32bits MCU

T

• TI :  Texas Instruments
• TNS :  Traitement Numérique du Signal
• TSC :  Time Stamp Counter
• TTM :  Time To Market

U

• UART :  Universal Asynchronous Receiver Transmitter
• USB :  Universal Serial Bus

V

• VHDL :  VHSIC Hardware Description langage
• VHSIC : Very High Speed Integrated Circuit
• VLIW : Very Long Intruction Word
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