Chapter 3

TI C6678's
Architecture

ENSI
CAEN

EEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE

2021-2022

TMS320C6678 PROCESSOR

Processor and Core specifications

|

E
C

ECOLE PUBLIQUE D’'INGENIEURS
CENTRE DE RECHERCHE

TMS320C6678 PROCESSOR

Processor Architecture

The Tl C6600 is a multicore DSP with a
homogeneous CPU architecture.

It includes 8 RISC-like VLIW CPUs that can
be clocked up to 1.4 GHz.

— 44.8 GMAC/core for fFixed point @1.4 GHz
— 22.4 GFLOP/core for floating point @1.4 GHz

TMS320C6678 functional block diagram

Boot ROM |4—»
[Somaphore J+—»

Power . R

PLL || “—>
%3

TN

e
(\ HyperLink

PCle =2

CorePac

Tk
3ZKB L1 JZKB L1 !
P<Cache D-Cache

512ZKB L2 Cache

8 Cores @ up to 1.4 GHz

TeraNet

Multicore Navigator

Queue Packet
Manager DMA

— Security

"

-
Packet

f |

Network Coprocessor

SRIO x4
Ethernet
Switch ‘—l

TMS320C6678 PROCESSOR =SE82
Core Architecture E NSI

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

The C66x CorePac consists of several components:
» The C66x DSP and associated C66x CorePac core

* Level-one and level-two memories (L1P, L1D, L2) Program Memory Controller (PMC) With

Memory Protect/Bandwidth Mgmt

L2 Cache/
SRAM

* Data Trace Formatter (DTF) C66x DSP Core 512KB

* Embedded Trace Buffer (ETB)
* Interrupt Controller Boot

Unified Memory
Controller (UMC)

MSM

- [SRAM
Controller £ 4096KB
« Power-down controller Data Path A Data Path B =3
- A Register File B Register File § S
 External Memory Controller 25

A15-A0 B15-B0

.
2
©
2
5
€
o
8]
c
=
e
@
3]
x
w
o
c
©
-
1=
S
2
£
]
]
£

DMA Switch
Fabric

« Extended Memory Controller

* A dedicated power/sleep controller (LPSC)

External Memory
Controller (EMC)

s 1
TMS320C66x CorePac DSP Block Diagram

TMS320C6678 PROCESSOR sEEE
Core Architecture ENSI

[[[[[[[[[[[[[[[[[[[[[[[[[
CENTRE DE RECHERCHE

Each core has its own cache memories :
* 32 kB L1P cache memory
* 32 kB L1D cache memory
* 512 kB L2 cache memory

Figure 1-1 Flat Versus Hierarchical Memory Architecture

External memory Core

~100 MHz memory 600MHz
L1 cache
600 MHz

Speed/ 1 Memory

cost size
N

—

. “Why Use Cache?”

Texas Instruments,
200 Mtz memory SPRUGY8-November 2010

TMS320C6678 PROCESSOR

Processor Architecture

Also, all cores can access to a 4 MB multicore
shared memory (MSM), which can be configured
either as a cache memory or as an addressable
SRAM.

+ Multicore Shared Memory Controller (MSMC)
- 4096KEB M5M SRAM Memory Shared by Eight D5P
Coax CorePacs
- Memory Protection Unit for Both M5M SRAM and

DDR3_EMIF

[[[[[[[[[[[[[[[[[[[[[[[[
EEEEEEEEEEEEEEEEE

| Memory Subsystem

64-Bit — |
| DDR3 EMIF

lDebug & Trace | €—p

Boot ROM |4—»

ore |4—p

Ce6x™

Power | CorePac
Management
PLL [32KBL1 | 32KBL1
3 P-Cache D-Cache
m 512KB L2 Cache
TN e

%3 8 Cores @ up to 1.25 GHz

g
HyperLink TeraNet ‘
"

A
|) Multicore Navigator
Queue Packet
Manager DMA
v

“—b Security
Accelerator
-
Facket
Accelerator
m Network Coprocessor

EMIF 16
PCle x2
SRIO x4
Ethernet
Switch

TMS320C6678 PROCESSOR

Core Architecture

The IDMA (Internal Direct Memory Access)
is @ DMA controller local to the CorePac.

It can be configured and is fully accessible T

by the developer.

It can handle data transfer between local
memories, or between peripheral
configuration space (CFG) and local

memories. o]

Local transfers to the CPU are determinist.

Cache control

ENSI
CAEN

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

C6600 HARDWARE PIPELINE

C6600 HARDWARE PIPELINE

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Reminder: a CPU is a sequential machine, but it can process simultaneously several
instructions thanks to the stages of its hardware pipeline.

PROGRAM MEMORY

FETCH Binary instructions flow

DECOD thread,
Data flow EXEC ()
WRITEBACK

PROGRAM MEMORY

ADDRESS BUS CTION BUS

DATA MEMORY

ADDRESS BUS DATA BUS

DATA MEMORY

10

C6600 HARDWARE PIPELINE S

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

The C6600 pipeline has 16 stages (called phases)

Figure 5-5 Pipeline Phases

—»— Decode
l—— Fetch —» Execute

o [[e e [e o e [[[o[o]

Figure 5-6 Pipeline Operation: One Execute Packet per Fetch Packet

Fetch
Packet

n m_
—

o [oc [¢
—m o o
(v v e (SN =
o i e e [ov [oc] &
Tre s ew e [ov [oc] &
e rs ew | or | oc]

C6600 HARDWARE PIPELINE

CPUs from the C6600 Ffamily are
equipped with a VLIW (Very Long
Instruction Word) hardware pipeline.

It can process up to 8 instructions at
once with its 8 execution units.

Pipeline Phases Block Diagram

Fetch 256
]
[5m] oW] SADD | SADD [SwevA | sWPv | S0 | B]G
-
S
L
[| SH] SADD | SADD | SwevA | sWev | sus | B] Pw
-
PR

32 32 32
| SMPYH | SMPY | sus | B | DOP

Ty v T I3 1S PR e
U0 --DDDDDDDDDD

109 8 7 6 5 43 2 1

mMUDD0 -0000000000

31302928 31 3029 28 109 87 654 3210

Register file A ST Data 1 Data2 |ST2 Register file B
64 - S 164

Data cache control

C6600 HARDWARE PIPELINE
FETCH stage

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

The FETCH stage is divided into four phases:

* PG: Program address generate
* PS: Program address send
* PW: Program access ready wait

* PR:Program fetch packet receive

Each fetch packet is 8-word long
(8 x 32 bits = 256 bits)

Actual
loading

@ |Pa]Ps|Pw] PR o
units

(c)
Fetch 256

o
=
[ow [wow [wuein] v [SevA] Svev][R] ew
[ow | ow | vk [480] AL] ow | ow [k] en

Decode

C6600 HARDWARE PIPELINE SoEEEE

FETCH stage CAEN

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

Each instruction has a 32-bit Fixed size (RISC-like instruction set).

The very last bit of each instruction is named P (Parallel) and is set to 0 or 1 either
during the compilation phase or directly by the developer (in assembly language).

By reading this bit, the FETCH stage knows exactly how many instructions to search for,
with a maximum of 8.

Figure 3-3 Basic Format of a Fetch Packet

0 31 0 31

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

LSBs of
the byte 00000b 00100b 01000b 01100b 10000b 10100b 11000b 11100b

address

C6600 HARDWARE PIPELINE SSSE=EEsEs
DECODE stage ENSI

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

With instructions arriving by packets, the decoding stage takes two phases.
1. The Dispatch phase redirects the instructions to their dedicated Execution Unit.
2. Each Execution Unit has its proper decoding unit.

Figure 5-3 Decode Phases of the Pipeline

Decode

Dispatch T T o5 [hop T S [S ook [Roen

‘Q/h’-

Decode

(A) NOP is not dispatched to a functional unit.

C6600 HARDWARE PIPELINE SSESESEEss
EXECUTION stage

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

The VLIW execution stage has 8 SIMD Execution Units (or Functional Units).

The Execution Units are labeled .L1, .S1, .M1, .D1, .L2, .S2, .M2, .D2, and some
instructions are EU-specific.

They are split into two symmetrical sides, each side having its own 32-bit register File.

Figure 5-4 Execute Phases of the Pipeline

N EIEIEIEE

Execute

se QQ---Q@@D@@@@@D@

Register file B

64

S T S
Data address 1 Data address 2

L1 Data cache control

Table 5-1 Operations Occurring During Pipeline Phases (Part 2 of 2)

Stage Phase Symbol During This Phase

Execute Execute 1 El For all instruction types, the conditions for the instructions are evaluated and operands are
read.
For load and store instructions, address generation is performed and address modifications
are written to a register file.!
For branch instructions, branch fetch packetin PG phase is affected.’!
For single-cycle instructions, results are written to a register file.!
For DP compare, ADDDP/SUBDP, and MPYDP instructions, the lower 32-bits of the sources
are read. For all other instructions, the sources are read.!
For MPYSPDP instruction, the srcT and the lower 32 bits of src2 are read.’
For 2-cycle DP instructions, the lower 32 bits of the result are written to a register file.!

Execute 2 E2 For load instructions, the address is sent to memory. For store instructions, the address and
data are sentto memaory.!
Single-cycle instructions that saturate results set the SAT bit in the control status register
(CSR) if saturation occurs.!
For multiply unit, nonmultiply instructions, results are written to a register file.?
For multiply, 2-cycle DP, and DP compare instructions, results are written to a register file.!
For DP compare and ADDDP/SUBDP instructions, the upper 32 bits of the source are read.!
For MPYDP instruction, the lower 32 bits of srcT and the upper 3 2 bits of sre2 are read.!
For MPYI and MPYID instructions, the sources are read.!
| For MPYSPDP instruction, the srcl and the upper 32 bits of src2 are read.!
Execute 3 E3 Data memaory accesses are performed. Any multiply instructions that saturate results set the

SAT bit in the control status register (CSR) if saturation occurs.!
For MPYDP instruction, the upper 32 bits of srcT and the lower 32 bits of src2 are read.!

For MPYI and MPYID instructions, the sources are read.!

Execute 4

E4

For load instructions, data is broughtto the CPU boundary.!

For multiply extensions, results are written to a register file.

For MPY| and MPYID instructions, the sources are read.!

For MPYDP instruction, the upper 32 bits of the sources are read.
For MPY| and MPYID instructions, the sources are read.!

For 4-cycle instructions, results are written to a register file.!

For INTDP and MPYSP2DP instructions, the lower 32 bits of the result are written to a register
file.!

Execute 5

ES

For load instructions, data is written into a register.!

For INTDP and MPYSP2DP instructions, the upper 32 bits of the result are written to a register
file.!

Execute 6

Execute 7

E6

E7

For ADDDP/SUBDP and MPYSPDP instructions, the lower 32 bits of the result are written to a
register file.!

For ADDDP/SUBD P and MPYSPDP instructions, the upper 32 bits of the result are written to a
register file.!

Execute 8

E8

Nothing is read or written.

Execute &

5]

For MPY! instruction, the resultis written to a register file.!

For MPYDP and MPYID instructions, the lower 32 bits of the result are written to a register
file.!

Execute 10

pipeline operation after E1.

E10

For MPYDP and MPYID instructions, the upper 32 bits of the resultare written to a register
file.!

. This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction does notwrite any results or have any

. Multiply unit, nonmultiply instructions are AVG2, AVG4, BITC4, BITR, DEAL, ROT, SHFL, SSHVL, and S5HVR.
. Nultiply extensions indude MPY2, MPY4, DOTPx2, DOTPUS, MPYHIx, MPY LIx, and MVD.

C6600 HARDWARE PIPELINE =SsssssEss
EXECUTION stage
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Instructions with a execution time greater than one cycle is followed by a delay slot,
written with a NOP instruction (No Operation).

The NOP instruction corresponds to the time of the instruction travelling through the
current Execution Unit.

Instruction
in parallel

18

C6600 HARDWARE PIPELINE T
EXECUTION stage ENSI

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

As an example, here is the documentation for the MPYSP instruction.

4.212 MPYSP
Multiply Two Single-Precision Floating-Point Values

syntax ~ MPYSP (.unit) srcl, src2, dst

Parallel

unit =.M1 or .M2

Opcode

Instruction Type Four-cycle

P 5 Delay Slots 3

17

13 12 1 10 9 8 7 6 5 4 3 2 1 0
| s [« ol vfefoefofoelofofofs]or]
5 1 1 1

Functional Unit Latency 1

SeeAlso ~ MPY, MPYDP, MPYSP2DP

Opcode map field used... For operand type. Unit

srct sp M1, M2
s o Execution

Example MPYSP |.M1X Al,B2,A3

sp
unit

ENSI
CAEN

ECOLE PUBLIQUE D'INGENIEURS
CENTRE DE RECHERCHE

20

PROGRAMMING A VLIW CPU

PROGRAMMING A VLIW CPU

Example code ENSI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Let's see how a VLIW (Very Long Instruction Word) CPU works by focusing on the
execution units. We'll start with a canonical assembly code.

13 CPU cycles

22

PROGRAMMING A VLIW CPU

Rewriting code ENSI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Now sort the instructions according to the data dependencies.
We'll get three instruction branches.

8 CPU cycles

4 CPU cycles

MV D2 B9, BT 1 CPUcyle

23

PROGRAMMING A VLIW CPU

Rewriting code ENSI

ECOLE PUBLIQUE D'INGENIEURS
sssssssssssssss

In theory, these branches can be executed in parallel.

8 CPU cycles

- o

1 CPU cycle

24

PROGRAMMING A VLIW CPU

Rewriting code ENSI

ECOLE PUBLIQUE D'INGENIEURS
sssssssssssssss

However, we must pay attention to functional dependencies!

8 CPU cycles

4 CPU cycles

1 CPU cycle

25

PROGRAMMING A VLIW CPU

Rewriting code ENSI

ECOLE PUBLIQUE D'INGENIEURS
sssssssssssssss

We shall rewrite the code (refactoring) to make parallelism possible.

8 CPU cycles

- e

1 CPU cycle

26

PROGRAMMING A VLIW CPU

Rewriting code ENSI

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Here are the canonical and optimized versions of the same code.

Canonical asm - 13 CPU cycles Optimized asm — 8 CPU cycles

PROGRAMMING A VLIW CPU

Code execution EN S [

OO CanTaE bE RECHERCHE
|

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

PROGRAM MEMORY e

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

OO CanTaE bE RECHERCHE
|

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles CPU

FADDSP

NOP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles CPU

ADDSP

FADDSP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles CPU

NOP

ADDSP
FADDSP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

FADDSP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

ADDSP
FADDSP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

ADDSP
FADDSP

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

ECOLE PUBLIQUE D'INGENIEURS

PROGRAM MEMORY [

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU

Code execution EN S [

OO CanTaE bE RECHERCHE
|

Optimized asm — 8 CPU cycles

DATA MEMORY

PROGRAMMING A VLIW CPU SsSsssssss
VLIW CPU properties
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

One particularity of VLIW processors is that their assembly code (and binary code as
well) is out of order in the program memory, but they come out of the pipeline in order.

This very simple CPU has a very good performances/Watt ratio.
However, intelligence and skills belong to the developper and the toolchain.

B r ..',_,C.'. i ",‘7:". P

[o - ,\}IH k.
.1’ r-j

* Nll'l' HARD

memegenerator.net

PROGRAMMING A VLIW CPU

VLIW CPU properties

VLIW CPU

Intelligence bring by toolchain and engineer
Memory program code is out of order
Execution In Order

Determinist

Excellent performance/consumption ratio

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

Superscalar CPU

Intelligence lies within the execution stage
Memory program code is in order
Execution is Out Of Order (OOO execution)
Not determinist

Bad performance/consumption ratio

42

PROGRAMMING A VLIW CPU EESsssssss
VLIW CPU properties ENSI

[[[[[[[[[[[[[[[[[[[[[[[[
EEEEEEEEEEEEEEEEE

On the one hand are designed to execute generic code with almost
no optimisation and that includes lots of branches and tests. Keyword is

On the other hand must run target-dependant code in order to use their
maximum capability. However this means (no portability).

ptr_x2[11] = xtl * col + ytl * 3il; 4
ptr x2[11 + 1] = ytl * col - xtl * 3il; e T, _d
ptr x2[h2] = xt0 * cod + yol * 3iZ; -

addsp (xhl 0 xh0 0, xh21l 0 xh20 0);
addsp(xhl 1 xh0 1, xh21 1 xh20 1);

ptr_xZ2[h2 + 1] = yt0 * cod - xtd * 3i2;

Helhe e A vt0 0 xt0 0 = dsubsp(xhl 0 xh0 0, xh2l 0 xh20 0);
ptl_‘f%if] - Tti %L: T yRe Jl:' yt0 1 xt0 1 = dsubsp(xhl 1 xh0 1, xh2l 1 xh20 1):
ptr_x2[l2 + = Ytz co3 - Kt 313; - - = — - - -~ -

TI DSPLIB, FFT algorithm, floating point TI DSPLIB, FFT algorithm, floating point
Canonical implementation Optimised implementation (intrinsec functions)
- PORTABLE - NOT PORTABLE

43

PROGRAMMING A VLIW CPU SESSSSsSsES
VLIW CPU properties
CAEN

ECOLE PUBLIQUE D'INGENIEURS
EEEEEEEEEEEEEEEEE

If one wants to use the full capability of a processor, he must master the hardware
architecture as well as associated developping tools (i.e. toolchain).

Also one must be able to use math and rewrite the algorithm (and its implementation)
with the aim of a code acceleration.

As a matter of fact, the most performant codes are most of the time not portable.

44

	Titre 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

