
2021-2022

Chapter 5

C6678’s
Assembly

C6678 INSTRUCTION SET
ARCHITECTURE

3

C6678 INSTRUCTION SET ARCHITECTURE

Instruction fields

Let’s see the different fields of an instruction line in assembly language for the Texas
Instruments C6600 architectures.

Note that some fields are specific to VLIW architectures.

label: || [cond] Instr .Unit Operands ;comment

Parallel
(with prev. Instr.)

Condition
(each instr. can be)

Instruction unit
(1 of the 8)

With format:
src, src, dest

4

C6678 INSTRUCTION SET ARCHITECTURE

Instruction fields

Remember that all fields of an instruction in assembly language correspond to a field in
the binary code of the instruction (except for the label and the comment).

See for instance the MPYSP instruction.

Instruction Opcode
(MPYSP specific)

Side
Parallel

Condition
(A1, A2, B0, B1, B2)

Operands
(one of 32 registers)

5

C6678 INSTRUCTION SET ARCHITECTURE

Execution units

In order to ease the understanding of the C6600 Instruction Set Architecture, we’ll look
at the effects of the assembly instructions onto the execution stage.

6

C6678 INSTRUCTION SET ARCHITECTURE

Execution units

The C6000 CPU has a Load-Store architecture.

This means that some execution units (.D1 and .D2) are dedicated to memory access,
and both of them have a direct access to the L1 cache memory (64-bit bus).

The other execution units are used for control and processing.

Data bus (64-bit)
L1 cache Reg file A/B←→

Memory address bus
(32-bit)

.D1/.D2 L1 cache →

7

C6678 INSTRUCTION SET ARCHITECTURE

Addressing modes

Only 3 addressing modes are supported by the C6000 ISA.

Remind that addressing modes correspond to data manipulation strategies , as used by
the instructions.

Being a calculation processor, the C6000 CPU heavily uses register addressing mode.

● Register addressing
● 324 instructions (full ISA)

● Indirect addressing
● 18 instructions (load/store instructions)

● Immediate addressing

8

DISCRETE CONVOLUTION ALGORITHM
IN CANONICAL C6678 ASSEMBLY

10

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Presentation

For the remaining part of this lecture, we’ll translate the C algorithm into a C6678
assembly language program.

The canonical C version of the program is on the next slide.

For educational purpose, we will ignore the delay slots that are
associated to instructions execution time.

The absence of the NOP instructions will facilitate the
understanding of the canonical assembly program.

Do not forget to add the delay slots when programming the
target DSP!

11

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Canonical C implementation

This is the algorithm that will be studied during the lab sessions.

It’s a canonical C implementation, using IEEE-754 single-precision floats.

12

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Registers use

Registers used for passing parameters through function call:

We decide to use those registers:
● i = B0

● j = A1

● yk (temp) = A5

void main(void)
{

fir_sp(xk_sp, a_sp, yk_sp, A_LENGTH, YK_LENGTH);

while(1);
}

A4 B4 A6 B6 A8

Returned
value in A4

B3 register used to
save return address

● xk_sp = A19

● a_sp = B19

● xk = A9

● a = B9

See “TMS320C6000 Optimizing Compiler V7.6” User’s guide, Chapter “7.3 Register conventions”

13

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Multiplication-Accumulation

The easiest way to translate the C into assembly
language is to start from the main operation,
inside the inner loop.

Like many other digital signal processing
algorithms, the discrete convolution uses MAC
(Multiply-Accumulate) or SOP (Sum Of Products)
instructions.

First let’s look at the MPYSP instruction.

 fir_sp_asm:

MPYSP .M1 A9, B9, A17

14

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Multiplication-Accumulation

The current example shows a cross path (i.e. the
two sources are not from the same side).

This brings some limitations:
● The destination register and the execution

unit must be on the same side
● Only one source register can be on the other

side
● Add the ‘x’ suffix when specifying the

execution unit

 fir_sp_asm:

MPYSP .M1x A9, B9, A17

15

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Multiplication-Accumulation

Now we can use an addition instruction.

Well done!

You just implemented

a MAC operation!

 fir_sp_asm:

MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

16

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Multiplication-Accumulation

Use of execution units:

MPYSP

ADDSP

17

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

Move data from a CPU register to another one. fir_sp_asm:
MV .L1 A8, B0

MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

18

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

Before performing the MAC, we must load the
cells values (stored in the L1 cache memory) into
CPU registers.

We must use one of the LDx (load) instructions:
● LDB, B = Byte = 1 byte = char

● LDH, H = Half-word = 2 bytes = short int

● LDW, W = Word = 4 bytes = int, float

● LDDW, DW = Double-Word = 8 bytes = long, double

The .D1 and .D2 executions units are dedicated
to ST and LD instructions only.

 fir_sp_asm:
MV .L1 A8, B0

LDW .D1 *A19, A9
LDW .D2 *B19, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

19

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

Use of execution units:

MPYSP

ADDSP

MV

LDx / STx

20

21

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

Note that a pointer-like style is used.

In this example case, A19 and B19 registers
contain each an address. The ‘*’ character before
the register name indicates the use of indirect
addressing mode.

This is equivalent to the use of pointers in C.

 fir_sp_asm:
MV .L1 A8, B0

LDW .D1 *A19, A9
LDW .D2 *B19, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

22

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

Similarly to the pointers in C language, registers used in indirect addressing mode
support pre- and post-incrementations.

Also, load and store operations can be indexed with the [] notation, like arrays in C.

23

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Data management

To summarize:

The A19 and B19 registers contain the address
of the current cell of a[] and xk[] arrays.

The two LDW instructions load 4 bytes from the
L1 cache memory to the CPU registers A9 & B9.

The address value contained in A19 and B19
registers are incremented afterward, making
these registers pointing to the next cell.

 fir_sp_asm:
MV .L1 A8, B0

LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

24

25

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

The C6000 family historically supported only one
branch instruction: the B (branch) instruction.

It allows to perform function calls as well as all
known control structures (if, for, while, …).

The B instruction uses .S1 and .S2 execution
units.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

 B .S1 fir_sp_asm_l2

26

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

Use of execution units:

MPYSP

ADDSP

MV

LDx / STx

B

27

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

A condition can be added to the execution of an
instruction.

Five registers (A1, A2, B0, B1, B2) can be used as
condition values.

Syntax:
● [R] = instruction executed if R ≠ 0
● [!R] = instruction executed if R = 0

All instructions can be executed conditionally.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

 [A1] B .S1 fir_sp_asm_l2

28

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

Implement the internal loop’s counter. fir_sp_asm:
MV .L1 A8, B0

MV .L1 B6, A1

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB .L1 A1, 1, A1
 [A1] B .S1 fir_sp_asm_l2

29

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

Implement the external loop. fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:

MV .L1 B6, A1

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB .L1 A1, 1, A1
 [A1] B .S1 fir_sp_asm_l2

[B0] SUB .L2 B0, 1, B0
[B0] B .S1 fir_sp_asm_l1

30

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Control and branch

The return address of a function is always given
by the calling function through the B3 register.

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:

MV .L1 B6, A1

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB .L1 A1, 1, A1
 [A1] B .S1 fir_sp_asm_l2

[B0] SUB .L2 B0, 1, B0
[B0] B .S1 fir_sp_asm_l1

B B3

31

DISCRETE CONVOLUTION ALGORITHM IN CANONICAL C6678 ASSEMBLY LANGUAGE

Final version

Final version

Without the required delay slots!

 fir_sp_asm:
MV .L1 A8, B0

 fir_sp_asm_l1:
ZERO .L1 A5
MV .L1 B6, A1
MV .L1 A4, A19
MV .L1 B4, B19

 fir_sp_asm_l2:
LDW .D1 *A19++, A9
LDW .D2 *B19++, B9
MPYSP .M1x A9, B9, A17
ADDSP .L1 A17, A5, A5

[A1] SUB .L1 A1, 1, A1
 [A1] B .S1 fir_sp_asm_l2

STW .D1 A5, *A6++
ADD .L1 A4, 4, A4

[B0] SUB .L2 B0, 1, B0
[B0] B .S1 fir_sp_asm_l1

B B3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

