
2021-2022

Chapter 4

Lab’s example
algorithm

2

LAB’S EXAMPLE ALGORITHM

Discrete convolution

Lab sessions will use a well known algorithm: the discrete convolution.

This algorithm has a very simple structure, but it is very difficult to accelerate without
mathematical refactoring.

3

LAB’S EXAMPLE ALGORITHM

Discrete convolution

Let’s have a look at the mathematical definition of the discrete convolution

Where:

● x() is the input samples vector

● y() is the output samples vector

● a() is the coefficients vector

● Y is the output vector size

● N is the number of coefficients

● k is the index of the current sample

y (k) =∑
k=0

Y

∑
j=0

N

a(j)⋅x (k− j)

4

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Before being coded in C onto the wanted processor, the algorithm is usually validated
with prototyping and simulation tools, such as Matlab/Simulink.

Validating the algorithm consists in coding its canonical implementation and check the
input and output vectors values.

5

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Here is the Matlab implementation of the discrete convolution algorithm.

This code is given with lab materials

6

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Observe some of the outputs suggested by Matlab sources, for a 64th-order FIR filter.

Matlab sources given with lab materials

7

LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Once the algorithm has been validated, it can be implemented in the processor.

First make a canonical C implementation, using IEEE-754 single-precision floats.

8

LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Another canonical C implementation.

This one is given by Texas Instruments in its library dsplib.

9

LAB’S EXAMPLE ALGORITHM

Canonical C implementation

Another canonical C implementation, from the Texas Instruments dsplib.

But this time, it uses 16-bit signed integers with the Q1.15 format.

10

LAB’S EXAMPLE ALGORITHM

Goal

The main goal of the lab sessions is to present a generic methodology for optimizing
algorithms for a specific architecture.

In our case, we’ll optimize a discrete convolution algorithm for a TI C6678 DSP.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

