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Chapter 4

Lab’s example 
algorithm
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Discrete convolution

Lab sessions will use a well known algorithm: the discrete convolution.

This algorithm has a very simple structure, but it is very difficult to accelerate without 
mathematical refactoring.
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Discrete convolution

Let’s have a look at the mathematical definition of the discrete convolution

Where:

● x() is the input samples vector

● y() is the output samples vector

● a() is the coefficients vector

● Y is the output vector size

● N is the number of coefficients

● k is the index of the current sample

y (k ) =∑
k=0

Y

∑
j=0

N

a( j)⋅x (k− j)
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Typical workflow for algorithm coding

Before being coded in C onto the wanted processor, the algorithm is usually validated 
with prototyping and simulation tools, such as Matlab/Simulink.

Validating the algorithm consists in coding its canonical implementation and check the 
input and output vectors values.



5

LAB’S EXAMPLE ALGORITHM

Typical workflow for algorithm coding

Here is the Matlab implementation of the discrete convolution algorithm.

This code is given with lab materials
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Typical workflow for algorithm coding

Observe some of the outputs suggested by Matlab sources, for a 64th-order FIR filter.

Matlab sources given with lab materials
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Canonical C implementation

Once the algorithm has been validated, it can be implemented in the processor.

First make a canonical C implementation, using IEEE-754 single-precision floats.
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Canonical C implementation

Another canonical C implementation.

This one is given by Texas Instruments in its library dsplib.
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Canonical C implementation

Another canonical C implementation, from the Texas Instruments dsplib.

But this time, it uses 16-bit signed integers with the Q1.15 format.
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Goal

The main goal of the lab sessions is to present a generic methodology for optimizing 
algorithms for a specific architecture.

In our case, we’ll optimize a discrete convolution algorithm for a TI C6678 DSP.
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