
 Page i

20450 Century Boulevard
Germantown, MD 20874
Fax: (301) 515-7954

CPPI/QMSS Low Level Driver

Software Design Specification (SDS)

Revision A

February 21, 2012

.

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011-12 Texas Instruments Incorporated - http://www.ti.com/

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page ii

Revision Record

Document Title: Software Design Specification

Revision

Description of Change

A 1. Initial Release – Code Drop 1.0.0.0

2. OSAL API changes – Code Drop 1.0.0.1

3. Shared memory allocation considerations – Code Drop 1.0.0.2
4. Removed teardown descriptor. Added EOI and register C pop.

Documented device specific layer – Code Drop 1.0.0.3

5. Changed on-chip to return push policy field in monolithic descriptor

 Documented intc pending queues – Code Drop 1.0.0.5

6. Cache Hooks – Code Drop 1.0.0.10

Checklist to avoid common configuration mistakes

7. Exported device specific – Code Drop 1.0.0.11

8. Updated checklist and qmss_device.c sample file

9. Change usage of terms “resource manager” to “resource allocation” to

lessen confusion with new RM LLD module.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 1

TABLE OF CONTENTS

1 SCOPE ..4

2 REFERENCES...4

3 DEFINITIONS ...4

4 OVERVIEW...6

5 DESIGN ..7

5.1 DESIGN GOALS ...7
5.2 DESIGN DETAILS ..8
5.3 QMSS DESIGN DETAILS...9
5.3.1 QMSS LLD Initialization..11
5.3.1.1 QMSS initialization parameters .. 11

5.3.2 QMSS Device-Specific Initialization ..12
5.3.3 QMSS LLD Start...13
5.3.4 Memory Region Configuration ..13
5.3.5 QMSS resource allocation ..19
5.3.5.1 Queue allocation ... 19
5.3.5.2 Descriptors .. 21

5.3.6 QMSS En-queue ...23
5.3.6.1 Push Descriptor Only.. 23
5.3.6.2 Push Descriptor and Size .. 23
5.3.6.3 Push Descriptor and Optional Parameters... 23

5.3.7 QMSS De-queue..24
5.3.7.1 Pop Descriptor Only ... 24
5.3.7.2 Pop Descriptor and Packet Size .. 24

5.3.8 Emptying a Queue ...25
5.3.9 Diverting Queue Contents...25
5.3.10 Accumulation ...25

5.4 CPPI DESIGN DETAILS...28
5.4.1 CPPI LLD Initialization ...29
5.4.2 CPPI Device-Specific Initialization..29
5.4.3 CPPI CPDMA Initialization ...30
5.4.4 CPPI Resource Allocation ..30
5.4.4.1 Descriptors .. 30
5.4.4.2 Receive Channels.. 33
5.4.4.3 Transmit Channels .. 34
5.4.4.4 Receive Flow .. 35

5.4.5 Descriptor Management ...36
5.4.6 Programming Considerations ..39
5.4.7 Initialization Path ...41
5.4.8 Transmit ..43
5.4.8.1 Transmit Path – Detailed Steps ... 43

5.4.9 Receive...46
5.4.9.1 Receive Path – Detailed Steps .. 46

5.4.10 Error Processing ..49
5.4.10.1 Descriptor errors ... 49
5.4.10.2 Descriptor Starvation Errors ... 49

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 2

6 MEMORY CONSIDERATIONS ...50

7 CRITICAL SECTIONS...52

8 OS CONSIDERATIONS ...53

8.1 CPPI OSAL ..53
8.1.1 Memory Allocation ...53
8.1.2 Memory Cleanup...53
8.1.3 Critical Section Enter..53
8.1.4 Critical Section Exit ..54
8.1.5 Logging API ..54
8.1.6 Memory Access Hooks ..54

8.2 QMSS OSAL ..55
8.2.1 Memory Allocation ...55
8.2.2 Memory Cleanup...56
8.2.3 Critical Section Enter..56
8.2.4 Critical Section Exit ..56
8.2.5 Critical Section Enter..57
8.2.6 Critical Section Exit ..57
8.2.7 Logging API ..57
8.2.8 Memory Access Hooks ..58

9 INTEGRATION...59

9.1 PRE-BUILT APPROACH ...59
9.2 REBUILD LIBRARY...60

10 PHASE II ADDITIONS...62

11 CHECKLIST..63

11.1 SETUP RELATED...63
11.2 LINKING RAM...63
11.3 MEMORY REGION CONFIGURATION..63
11.4 PUSH/POP ..63
11.5 CPDMA CONFIGURATION ...64
11.6 STATISTICS ..64
11.7 INTERRUPTS..65

12 APPENDIX...66

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 3

Table 1. Referenced Materials..4
Table 2. Definitions..5
Table 3 Sample Queue Allocation Device Specific ..10
Table 4 QMSS Initialization Configuration Structure...12
Table 5 QMSS Global Configuration Parameters Structure...13
Table 6 Example Queue Types : Device dependent ..21
Table 7 QMSS Descriptor Configuration Structure...22
Table 8 Accumulator List Entry...26
Table 9 CPPI Global Configuration Parameters Structure...30
Table 10 CPPI Descriptor Configuration Structure...32
Table 11 CPPI Host Descriptor ..36
Table 12 CPPI Host Descriptor Structure...37
Table 13 CPPI Monolithic Descriptor ...38
Table 14 CPPI Monolithic Descriptor Structure ..38
Table 15 CPPI OSAL Functions...60
Table 16 QMSS OSAL Functions...60
Table 17 Device-Specific CPPI Configuration File...71
Table 18 Device-Specific QMSS Configuration File...75
Table 19 CPPI Error Codes..76
Table 20 QMSS Error Codes..77
Table 21 QMSS Accumulator Return Codes ..78

Figure 1 CPPI LLD and QMSS LLD Usage..8
Figure 2 Linking RAM and Memory Region Mapping..14
Figure 3 Static Memory Region Configuration...17
Figure 4 Dynamic Memory Region Configuration ...18
Figure 5 Transmit ..43
Figure 6 Receive...46

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 4

1 Scope

Documents the CPPI and QMSS Low Level Driver design.

2 References

The following references are related to the feature described in this document and shall be

consulted as necessary.

No Referenced Document Control Number Description

1 CPPI user guide Version 0.5.7 CPPI User Guide

2 CPPI LLD API
Documentation

Version

1.0.0.15

DOXYGEN generated API
documentation located in the package
under the “docs” directory in CHM
format.

2 QMSS LLD API
Documentation

Version

1.0.0.15

DOXYGEN generated API
documentation located in the package
under the “docs” directory in CHM
format.

Table 1. Referenced Materials

3 Definitions

Acronym Description

CPPI Communications Port Programming Interface

LLD Low Level Driver

QM Queue Manager

QMSS Queue Manager Sub System

PASS Packet accelerator Sub System

SRIO Serial Rapid Input Output

FFTC Fast Fourier Transform Co-processor

IPC Inter-process Communication

TCP3d Turbo Co-processor decoder

LTE Long Term Evolution

AIF Antenna Interface

BD Buffer Descriptor

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 5

Acronym Description

PD Packet Descriptor

EOI End Of Interrupt

QoS Quality of Service

INTD Interrupt Distributer

Table 2. Definitions

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 6

4 Overview

This document describes the Communication Port programming Interface (CPPI) and Queue

Mananger SubSystem (QMSS) low level driver design. This driver will potentially be used by

FFTC, SRIO, AIF2, PASS, TCP3d, LTE stack.

The idea of providing a low level driver is to abstract the complexities of CPPI and QMSS while

still allowing the drivers and applications to control and configure every aspect of CPPI and

QMSS.

The low level driver is provided as two separate libraries. The QMSS library can be used as a

stand alone library.

The CPPI library is also a user of the QMSS library.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 7

5 Design

5.1 DESIGN GOALS

The design goals for the low level drivers are as follows:

1. Performance

The low level drivers are designed with performance requirements at the forefront.

Various levels of APIs are provided to quickly configure either the hardware or optional

parameters.

2. OS independence

The low level drivers are designed to be OS independent to ease porting from one OS to

another.

3. Hardware abstraction

The hardware details are identified and abstracted as much as possible to ease porting to

another SoC.

4. Multicore awareness

The low level drivers are designed to be used by multiple drivers, applications running on

multiple cores.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 8

5.2 DESIGN DETAILS

Figure 1 illustrates the high level CPPI and QMSS blocks and the interactions of application,

driver or library with CPPI LLD and QMSS LLD.

Figure 1 CPPI LLD and QMSS LLD Usage

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 9

5.3 QMSS DESIGN DETAILS

The Queue Manager provides high-performance descriptor management. A total of 512 K

descriptors can be managed by the queue manager and these descriptors can be pooled into up to

8 K queues. To track the location of the descriptors in the queues, the queue manager uses

4x512 KB of memory. Up to 4x16 KB of this memory can be in the Linking RAM that is

embedded inside the QMSS and the remaining memory can be located elsewhere inside or

outside the device.

The descriptors that are managed by the queue manager can be clustered in up to 20 memory

regions that can be independently located anywhere in the device's memory map. The queue

manager is provided information about the location of these regions and the size and number of

descriptors in each of these regions.

Each descriptor is referenced by its memory address pointer. A descriptor is added to a queue by

writing the pointer to the queue's address and removed from a queue by reading the pointer from

the queue's address.

QMSS low-level driver handles the queue manager subsystem.

Note: The LLD is designed to meet performance requirements on a local Keystone device. Using

it to communicate with a remote keystone device is not supported. This is done so that the local

device accesses don’t have to pay the performance penalty required to differentiate between local

and remote device accesses.

• It provides resource management for a variety of queue types listed below.

Queue Start

Index

Queue count Queue Type

0 512 Queues with low priority accumulation and interrupt

support

512 128 AIF queues with hardware queue threshold status

640 32 PA_SS queues with hardware queue threshold status

672 16 SRIO queues with hardware queue threshold status

688 4 FFTC A queues with hardware queue threshold status

692 4 FFTC B queues with hardware queue threshold status

696 8 General purpose queues

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 10

704 32 Queues with high priority accumulation and interrupt

support

736 64 Queues with starvation counters

800 32 Transmit Infrastructure hardwired with pending signals

832 32 Traffic Shaping

864 7328 General purpose queues

Table 3 Sample Queue Allocation Device Specific

• It provides descriptor allocation functionality.

• It provides enqueue and dequeue functions to queue descriptors onto logical queues.

• It provides accumulator functionality.

• It provides threshold configuration and status information on all of the 8K queues

• It can be used to configure infrastructure DMA mode.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 11

5.3.1 QMSS LLD Initialization

This API is the entry point into QMSS low level driver. The QMSS LLD is initialized only once

in the system using the Qmss_init() API. The function sets up the low-level driver with

information pertaining to linking RAM, performs device-specific initialization such as number of

supported queues and addresses for memory mapped registers. It also downloads the PDSP

firmware if a valid firmware image is specified.

Qmss_Result Qmss_init (Qmss_InitCfg *initCfg , Qmss_GlobalConfigParams
*qmssGblCfgParams)

The inputs to this function are QMSS initialization parameters.

5.3.1.1 QMSS initialization parameters

The QMSS LLD provides a structure that should be filled with the required information.

• Linking RAM0 base address

• Linking RAM0 size

• Linking RAM1 base address

• Maximum number of descriptors required in the system

• PDSP firmware image

Note: The total linking RAM size (size0 and size1) must be at least equal to the total number of

descriptors in all memory regions.

If Linking RAM1 size is zero, Linking RAM0 must be big enough to store all the descriptors.

The Qmss_InitCfg structure that needs to be filled and sent as an input parameter to the

Qmss_init() function is listed below.

/**

 * @brief QMSS configuration structure

 */

typedef struct

{

 /** Base address of Linking RAM 0. LLD will configure linking RAM0 address

 * to internal linking RAM address if a value of zero is specified.

 */

 uint32_t linkingRAM0Base;

 /** Linking RAM 0 Size. LLD will configure linking RAM0 size to maximum

 * internal linking RAM size if a value of zero is specified

 */

 uint32_t linkingRAM0Size;

 /** Base address of Linking RAM 1. Depends on RAM 0 Size and total number

 * of descriptors. If linkingRAM1Base is zero then linkingRAM0Size

 * must be large enough to store all descriptors in the system

 */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 12

 uint32_t linkingRAM1Base;

 /** Maximum number of descriptors in the system. Should be equal to less

 * than the RAM0+RAM1 size */

 uint32_t maxDescNum;

 /** PDSP firmware to download. If the firmware pointer is NULL, LLD will

 * not download the firmware */

 Qmss_PdspCfg pdspFirmware[QMSS_MAX_PDSP];

}Qmss_InitCfg;

Table 4 QMSS Initialization Configuration Structure

5.3.2 QMSS Device-Specific Initialization

This section deals with initialization of parameters that define the device-specific characteristics

of the queue manager sub system. For example, the number of various types of queues supported,

the number of queues of each type, memory mapped register addresses etc. These parameters are

portable across SoC making the LLD SoC independent.

The device specific initialization is performed as a part of Qmss_init() API.

The structure is as follows. Refer to the appendix for a sample configuration.

typedef struct

{

 /** Maximum number of queue Managers */

 uint32_t maxQueMgr;

 /** Maximum number of queues */

 uint32_t maxQue;

 /* Queue start index and maximum number of queues of each queue type */

 Qmss_QueueNumRange maxQueueNum[25];

 /** Base address for the CPDMA overlay registers */

 /** QM Global Config registers */

 CSL_Qm_configRegs *qmConfigReg;

 /** QM Descriptor Config registers */

 CSL_Qm_descriptor_region_configRegs *qmDescReg;

 /** QM queue Management registers */

 CSL_Qm_queue_managementRegs *qmQueMgmtReg;

 /** QM queue Management Proxy registers */

 CSL_Qm_queue_managementRegs *qmQueMgmtProxyReg;

 /** QM queue status registers */

 CSL_Qm_queue_status_configRegs *qmQueStatReg;

 /** QM INTD registers */

 CSL_Qm_intdRegs *qmQueIntdReg;

 /** QM PDSP command register */

 volatile uint32_t *qmPdspCmdReg[QMSS_MAX_PDSP];

 /** QM PDSP control register */

 CSL_PdspRegs *qmPdspCtrlReg[QMSS_MAX_PDSP];

 /** QM PDSP IRAM register */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 13

 volatile uint32_t *qmPdspIRamReg[QMSS_MAX_PDSP];

 /** QM Status RAM */

 CSL_Qm_Queue_Status *qmStatusRAM;

}Qmss_GlobalConfigParams;

Table 5 QMSS Global Configuration Parameters Structure

5.3.3 QMSS LLD Start

Configuration information passed during the initialization API is replicated in local memory on

other cores when the Qmss_start()API is called. Every core has to call this API so the local data

structures are initialized.

5.3.4 Memory Region Configuration

The queue manager supports 20 memory regions with each region storing up to 32K descriptors.

The linking RAM stores the information for each descriptor in each memory region. E.g., the

information for descriptor 0 in memory region 0 is stored at linking RAM location with offset

zero from the linking RAM base address.

The figure below illustrates the relationship between memory regions and linking RAM. The

queue manager computes the descriptor addresses by taking into account the base address of the

region as well as the number of descriptors and size of each descriptor stored in the region The

descriptor pointers that are pushed on a queue must have an address that matches the computed

address based on the region base address, region index and descriptor size programmed in the

region control registers.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 14

Figure 2 Linking RAM and Memory Region Mapping

As shown in Figure 2, the base addresses of the descriptor regions must be in ascending order,

 i.e., the lowest physical address needs to be in the lowest region. The hardware was designed

such that the descriptor memory is allocated and the linking RAM configured at initialization

time referred to as static configuration.

This can pose a problem when all descriptor needs are not known up front at init time and some

runtime allocation schema might be required.

Software Solution:

We can leave logical holes of known sizes and insert memory regions with valid descriptor

addresses in ascending address order.

Taking this solution a step further, 2 options provided to the users.

Index 0 Region 0
 128 x 32
bytes

 Region 1
 64 x 64
bytes

 Region R
 32 x 32
bytes

Linking
RAM
Region 0

Linking
RAM
Region 1

128

entries

32 entries

64
entries

 0

 Region 2
 64 x 32
bytes

64
entries

Index 128

Index 192

Base Address R

Base Address 0

Base Address 1

Base Address 2

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 15

1) Static configuration schema for users who know descriptors requirements up front.

2) Dynamic memory region insertion for power users.

A single new API is provided to handle both the cases above:

Qmss_Result Qmss_insertMemoryRegion (Qmss_MemRegInfo *memRegCfg);

The input parameter structure Qmss_MemRegInfo is defined below:

typedef struct
{
 /** The base address of descriptor region. Note the
 * descriptor Base address must be specified in ascending memory order
 * */
 uint32_t *descBase;

 /** Size of each descriptor in the memory region.
 * Must be a multiple of 16
 */
 uint32_t descSize;

 /** Number of descriptors in the memory region.
 * Must be a minimum of 32.
 * Must be 2^(5 or greater)
 * Maximum supported value 2^20
 * */
 uint32_t descNum;

 /** Memory Region corresponding to the descriptor.
 * At init time this field must have a valid memory region
 * index (0 to Maximum number of memory regions supported).
 *

 * At runtime this field is used to either

 * * set to Qmss_MemRegion_MEMORY_REGION_NOT_SPECIFIED, in this case

 * * the LLD will decide which memory region to use.

 * * OR

 * * specify the descriptor memory region, must be a valid memory

 * * region index (0 to Maximum number of memory regions supported).

 */
 Qmss_MemRegion memRegion;

 /** Flag control whether the descriptors are managed
 * by LLD or by the caller allocating descriptor memory
 */
 Qmss_ManageDesc manageDescFlag;

 /** Used to leave holes by configuring dummy regions which can be later

 * configured with actual values. Must be calculated and a correct

 * startIndex must be specified if memRegion value is

 * valid (0 to Maximum number of memory regions supported).

 */

 uint32_t startIndex;

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 16

} Qmss_MemRegInfo;

Case1: Static Memory Region Configuration

This is to handle users who know the descriptor requirement up front and don’t care about

allocating descriptor memory at runtime.

Users can invoke the Qmss_insertMemoryRegion() API with the following parameters:

� descBase – Base memory address of the allocated descriptor pool in ascending

order.

� descSize – Size of descriptors in this memory region.

� descNum – Number of descriptors in this memory region.

� memRegion – Should be set to
Qmss_MemRegion_MEMORY_REGION_NOT_SPECIFIED.

� manageDescFlag

If set to Qmss_ManageDesc_MANAGE_DESCRIPTOR, the LLD manages the

resource; descriptors memory is chopped up into descNum number of

descriptors of size descSize. The drivers/application can reclaim this

memory by calling Cppi_initDescriptor() or Qmss_initDescriptor().

If set to Qmss_ManageDesc_UNMANAGED_DESCRIPTOR, descriptors are not

managed by the LLD. It is the caller responsibility to manage the allocated

descriptor memory.

� startIndex – Don’t care.

The LLD will configure the next available memory region and compute the start index based on

the previous configuration. This implies the configuration is sequential. The allocation starts with

the lowest number memory region available.

The figure below illustrates a use case where the API is called in a loop to configure memory

regions.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 17

Figure 3 Static Memory Region Configuration

Case2: Dynamic Memory Region Configuration

This is to handle users who don’t know the descriptor requirement up front and want to insert

memory regions.

Users can invoke the Qmss_insertMemoryRegion() API with the following parameters:

� descBase – Base memory address of the allocated descriptor pool in ascending

order.

� descSize – Size of descriptors in this memory region.

� descNum – Number of descriptors in this memory region.

� memRegion – Should be set to a valid memory region index from 0 to 19.

� manageDescFlag

If set to Qmss_ManageDesc_MANAGE_DESCRIPTOR, the LLD manages the

resource; descriptors memory is chopped up into descNum number of

descriptors of size descSize. The drivers/application can reclaim this

memory by calling Cppi_initDescriptor() or Qmss_initDescriptor()

If set to Qmss_ManageDesc_UNMANAGED_DESCRIPTOR, descriptors are not

managed by the LLD. It is the caller responsibility to manage the allocated

descriptor memory.

� startIndex – Must be set to the location where the memory region must be

inserted.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 18

Figure 4 Dynamic Memory Region Configuration

LLD inserts the new memory region and configures the linking RAM.

It provides the following error checking:

• Prevent reconfiguring a memory region

• Overlapping start indexes

• If the hole is not big enough to accommodate specified number of descriptors

• Memory address is not in ascending order

• Maximum number of descriptors set up during queue manager initialization are

already configured

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 19

If the memory region is successfully inserted, the API returns the inserted memory region index.

LLD provides a function to get the current memory region configuration so that the caller can

make a decision on where to insert the new memory region.

Qmss_Result Qmss_getMemoryRegionCfg (Qmss_MemRegCfg *memRegInfo)

Note: The two calls above, Qmss_getMemoryRegionCfg() and Qmss_insertMemoryRegion(),

must be protected with cross-core locks and critical sections to prevent another core or task from

configuring the same memory region or configuring overlapping addresses.

The descriptors memory are chopped into descriptors of configured size and number and stored

internally on general purpose queues, if the manage descriptor flag is set, until the driver can

reclaim them using Cppi_initDescriptor() or Qmss_initDescriptor() APIs.

Note: The QMSS LLD uses 20 general purpose queues for internal use to correspond to 20

memory regions in order to store descriptors if the LLD is asked to do so when inserting a

memory region.

5.3.5 QMSS resource allocation

This section discusses the QMSS low-level driver resource allocation in detail.

5.3.5.1 Queue allocation

The QMSS LLD manages the allocation and freeing of queues. The maximum number of queues,

the maximum number of queue managers and the division of queues into subcategories is

configured in the LLD via the QMSS global configuration parameter structure

(Qmss_GlobalConfigParams).

Users call the following API to obtain a queue:

Qmss_QueueHnd Qmss_queueOpen (Qmss_QueueType queType, int32_t queNum,
uint8_t_t *isAllocated)

Qmss_QueueHnd Qmss_queueOpenInRange (uint32_t startQueNum, uint32_t endQueNum,
uint8_t *isAllocated);

There are 2 ways to get a queue:

1. Request the queue number

The API allows the caller to specify a valid queue number via the input parameter queNum.

Valid queue numbers are 0 to 8191.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 20

If the queue is free, the LLD allocates the queue and marks it as used.

In this case the queType parameter is not used.

If the queue was already allocated (i.e., marked as used during a previous allocation call), an

existing queue handle is returned.

2. LLD allocates the queue

The caller can have the LLD allocate the resource by setting the queueNum input parameter

to QMSS_PARAM_NOT_SPECIFIED. In this case the queType parameter should be valid

and be of the type Qmss_QueueType

The queue types can differ from SoC to SoC and are therefore defined in the CSL layer to

make the LLD device independent.

Example for valid queue types:

File: csl_qm_queue.h

#define QMSS_FFTC_B_QUEUE_BASE 692

#define QMSS_MAX_FFTC_B_QUEUE 4

#define QMSS_HIGH_PRIORITY_QUEUE_BASE 704

#define QMSS_MAX_HIGH_PRIORITY_QUEUE 32

#define QMSS_STARVATION_COUNTER_QUEUE_BASE 736

#define QMSS_MAX_STARVATION_COUNTER_QUEUE 64

#define QMSS_INFRASTRUCTURE_QUEUE_BASE 800

#define QMSS_MAX_INFRASTRUCTURE_QUEUE 32

#define QMSS_TRAFFIC_SHAPING_QUEUE_BASE 832

#define QMSS_MAX_TRAFFIC_SHAPING_QUEUE 32

#define QMSS_GENERAL_PURPOSE_QUEUE_BASE 864

#define QMSS_MAX_GENERAL_PURPOSE_QUEUE 7328

/**

 * @brief Queue Type. Specifies different queue classifications

 */

typedef enum

{

 /** Low priority queue */

 Qmss_QueueType_LOW_PRIORITY_QUEUE = 0,

 /** AIF queue */

 Qmss_QueueType_AIF_QUEUE,

 /** PASS queue */

 Qmss_QueueType_PASS_QUEUE,

 /** INTC pending queue */

 Qmss_QueueType_INTC_QUEUE,

 /** SRIO queue */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 21

 Qmss_QueueType_SRIO_QUEUE,

 /** FFTC queue A */

 Qmss_QueueType_FFTC_A_QUEUE,

 /** FFTC queue B */

 Qmss_QueueType_FFTC_B_QUEUE,

 /** High priority queue */

 Qmss_QueueType_HIGH_PRIORITY_QUEUE,

 /** starvation counter queue */

 Qmss_QueueType_STARVATION_COUNTER_QUEUE,

 /** Infrastructure queue */

 Qmss_QueueType_INFRASTRUCTURE_QUEUE,

 /** Traffic shaping queue */

 Qmss_QueueType_TRAFFIC_SHAPING_QUEUE,

 /** General purpose queue */

 Qmss_QueueType_GENERAL_PURPOSE_QUEUE

}Qmss_QueueType;

Table 6 Example Queue Types : Device dependent

The LLD allocates the next available queue and marks it as used. Allocation starts with the

lowest queue number in the given queue type.

In both cases a handle to the opened queue is returned to the caller that must be used as an input

parameter when operating on that queue.

You can also specify a start and end range using Qmss_queueOpenInRange()API. The LLD will

allocate a free queue within the range if available.

The API also provides the caller with information on whether the handle returned for the

requested queue number is due to a new queue allocation or not via the isAllocated output

parameter. This parameter contains the reference count that indicates the number of times the

queue was opened.

The LLD maintains a reference count per queue which is incremented every time the queue is

opened using the Qmss_queueOpen() API and decremented when the queue is closed via the

Qmss_queueClose() API. The queue is reallocated only when the reference count becomes zero.

5.3.5.2 Descriptors

The memory for descriptors that was allocated by the system and set up during the

Qmss_insertMemoryRegion() API can be taken back by the drivers/applications via the

Qmss_initDescriptor() API. The descriptor resources are managed by the LLD only if the manage

descriptor flag manageDescFlag was set when the descriptor memory region was created,

otherwise it is up to the caller to manage the descriptors.

Qmss_QueueHnd Qmss_initDescriptor (Qmss_DescCfg *descCfg, uint32_t
*numAllocated);

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 22

The caller needs to specify a few input parameters via the Qmss_DescCfg structure. The

parameters are described below:

• Number of descriptors to be allocated

• Memory region to allocate from

• Destination queue where the descriptors are stored and returned to caller. Valid queue

numbers are 0 to 8191. If queue number is not known then set to

QMSS_PARAM_NOT_SPECIFIED and specify Destination queue type

OR

• Destination queue type

The input parameter structure Qmss_DescCfg is shown below:

typedef struct

{

 /** Memory Region corresponding to the descriptor */

 uint32_t memRegion;

 /** Number of descriptors that should be allocated */

 uint32_t descNum;

 /** Queue where the descriptor is stored. If destQueueNum is set to

 QMSS_PARAM_NOT_SPECIFIED then the next available queue of type

 Qmss_QueueType will be allocated */

 uint32_t destQueueNum;

 /** If destQueueNum is set to QMSS_PARAM_NOT_SPECIFIED then the next

 available queue of type queueType will be allocated */

 Qmss_QueueType queueType;

}Qmss_DescCfg;

Table 7 QMSS Descriptor Configuration Structure

The function informs the caller about the actual number of descriptors allocated from the

specified memory region using the numAllocated output parameter. This is done to handle a case

where the requested number of descriptors is not available; the function allocates what is

available and informs the caller of the same.

The decision of which memory region to use is based on factors such as:

• Size of descriptor

• Type of memory the descriptor is allocated from e.g., L2, shared, DDR memory

• Reserved allocation for a particular IP block

Since the memory regions might be configured by the system during the initialization phase, the

LLD provides an API that aids drivers and application to decide on the memory region to allocate

from. The function Qmss_getMemoryRegionCfg() returns the memory region configuration

parameters such as memory region index, descriptor base address, number and size of descriptors

for all supported memory regions.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 23

Qmss_Result Qmss_getMemoryRegionCfg (Qmss_MemRegCfg *memRegInfo)

Once the function determines descriptors are available in the requested memory region, they are

allocated and pushed onto the destination queue specified in the input parameter. The destination

queue allocation is discussed in section Queue allocation

The handle to the allocated destination queue is returned to the caller.

Note: The CPPI LLD provides a similar API, Cppi_initDescriptor(), that is used to allocate CPPI

descriptors. The idea behind providing a descriptor allocate API in the QMSS LLD

((Qmss_initDescriptor())) is to allow users access to non-CPPI descriptors.

5.3.6 QMSS En-queue

The packets are queued onto the logical queues by writing a burst of information. This burst

contains the required pointer to the descriptor that is being added, optional control information,

and optional descriptor size.

The LLD provides various APIs to add packets to a queue. This function writes a descriptor

pointed to by descAddr onto a queue specified by the queue handle hnd.

5.3.6.1 Push Descriptor Only

This is a faster version of the API since only the descriptor address is written.

This function does not configure the optional parameters.

The API format is:

void Qmss_queuePushDesc (Qmss_QueueHnd hnd, void* descAddr)

5.3.6.2 Push Descriptor and Size

The size parameter is also used as a hint when pre-fetching the descriptor. Since the descriptors

are 16 byte aligned, the lower 4 bits are used to indicate to the DMA the size of the descriptor.

The DMA uses this information to control how large the initial packet descriptor fetch will be.

void Qmss_queuePushDescSize (Qmss_QueueHnd hnd, void* descAddr, uint32_t

descSize)

5.3.6.3 Push Descriptor and Optional Parameters

void Qmss_queuePush (Qmss_QueueHnd hnd, void* descAddr, uint32_t packetSize,

uint32_t descSize, Qmss_Location location)

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 24

The optional parameter packetSize is used to specify the size of packets and used during pop

operation.

The optional parameter location is used to specify where the packet should be queued. The

default behavior is to queue the packet to the tail of the queue. It can be overridden and the

packet pushed to the head of the queue.

These functions make use of Queue Proxy so they are multicore safe. However critical sections

to protect against preemption are required.

5.3.7 QMSS De-queue

The packets are de-queued from the logical queues by reading a descriptor pointer value from the

queue. The LLD provides various APIs to pop a packet of a queue.

5.3.7.1 Pop Descriptor Only

Only the descriptor address is read. This API is multicore/task safe.

void* Qmss_queuePop (Qmss_QueueHnd hnd)

The function pops a descriptor from a queue specified by the queue handle hnd. It returns NULL

if the queue is empty else a valid descriptor address.

The lower four bits of the descriptor address contain the size of the descriptor if the size was

specified when pushing the descriptor onto the queue. The caller should mask the lower order

four bits before using the descriptor.

5.3.7.2 Pop Descriptor and Packet Size

The descriptor address along with the packet size of the descriptor popped is read from a queue

specified by the queue handle hnd. The packet size is available only if it was specified during the

push operation. It returns NULL if the queue is empty.

This API is not multicore/task safe.

void Qmss_queuePopDescSize (Qmss_QueueHnd hnd, void* *descAddr, uint32_t

*packetSize)

It is possible that the descriptor is popped by another core/task between the time taken to read the

packet size and the descriptor address by the first core/task. The caller should provide appropriate

locks.

The packet size field is part of the descriptor and should be used to ensure correctness.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 25

The lower four bits of the descriptor address contain the size of the descriptor if the size was

specified when pushing the descriptor onto the queue. The caller should mask the lower order

four bits before using the descriptor.

5.3.8 Emptying a Queue

The entire queue can be emptied in a single instruction. This operation must be used with caution

because the contents of the cleared queue are irrecoverably lost.

void Qmss_queueEmpty (Qmss_QueueHnd hnd)

5.3.9 Diverting Queue Contents

The contents of an entire queue can be copied into another queue. Users can also specify whether

the contents should be merged to the head or tail of the destination queue.

void Qmss_queueDivert (Qmss_QueueHnd srcQnum, Qmss_QueueHnd dstQnum,

Qmss_Location location)

5.3.10 Accumulation

The QMSS contains two PDSPs that allow for autonomous accumulation of descriptor pointers

and subsequent notification of the host DSP or peripheral.

The 2 possible configurations are:

o 32 channel high priority accumulation PDSP1 & 16 channel low priority accumulation on
PDSP2.

o 48 channel combined accumulation on PDSP1. QoS on PDSP2.

The accumulator uses the concept of channels that can be mapped to queues. Each channel can

be individually enabled or disabled. Each channel can monitor a single or a group of 32 queues.

If multiple queues are monitored, referred to as multi-mode, the queue group must be aligned to a

32 queue boundary. Individual queues within a queue group can be excluded from monitoring

using an enable mask.

The host processor allocates a block of memory to hold a list of descriptor pointers. This memory

block is divided into two pages referred to as ping/pong. Each channel can write packet

information to a ping/pong descriptor list anywhere in memory independent of other channels.

Operation always begins on the first page (page 0). When an interrupt is fired for the first time on

a particular channel, this indicates that page 0 is full and ready for use by the host processor. On

each subsequent interrupt, the service page toggles, going from 1 and then back to 0. It is up to

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 26

the host processor to keep in synch with the accumulator PDSP based on the number of interrupts

received for the accumulator channel.

The information accumulated by the channel can be one of the following:

Mode
Entry Byte

Size
Entry Contents

“D” 4 Word 0 : Packet Descriptor Pointer

Word 0 : Packet Length (as reported by queue manager)
“C, D” 8

Word 1 : Packet Descriptor Pointer

Word 0 : Packet Count on Queue (when read)

Word 1 : Byte Count on Queue (when read)

Word 2 : Packet Length (as reported by queue manager)
“A, B, C, D” 16

Word 3 : Packet Descriptor Pointer

Table 8 Accumulator List Entry

For channels that are monitoring multiple queues, the upper 16 bits of the “C” field contain the

index of the original source queue.

The number of entries in the list can be reported in one of two ways. In “NULL terminate” mode,

the entry list always ends with an entry where the descriptor pointer is set to NULL. In the “entry

count” mode, the first 32-bit word of the first entry in the list holds a count of the number of

entries in the list (not including the count entry).

Note that in either case, there is room for one less list entry in a page than is actually specified by

the host. In the “NULL terminate” mode, one entry is used at the end to act as the NULL

terminator, and in the “entry count” mode, one entry is used at the start to specify entry count.

Each accumulator channel will always fire an interrupt when all the entries in the current buffer

page are filled. It is also possible to fire interrupts more quickly by configuring the interrupt

pacing mode. The interrupt pacing mode allows for interrupts to be generated on a partially filled

page, based on configurable packet activity and a configurable amount of elapsed time. Note that

the pacing is per channel, and not per interrupt, thus if two channels are using the same host

interrupt, then the host interrupt can be fired as each channel independently requires it to.

The available interrupt pacing modes are based on one of the following events:

• Programmable delay since last interrupt to the host

• Programmable delay since first packet on new activity

• Programmable delay since last packet on new activity

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 27

The above event setting determines when the interrupt counter will be loaded and begin its

countdown. An interrupt will fire only when both the timing conditions are met and there are

packets available to forward to the host. If the timer expires with no packet activity, then the next

incoming packet will fire an immediate interrupt.

The time delay from the configured event is programmable, ranging from 0 to 1.6 seconds in

steps of configured timer value. A timer setting of 0 seconds is useful in cases where the user

wishes to fire interrupts without delay based on any packet activity. Note that a delay of 0

seconds will always fire an immediate interrupt on the first received packet no matter which of

the three configurable pacing events are used.

The Accumulator time "tick" is controlled by a local timer connected to the PDSP core. This

timer has a programmable count based on the sub-system clock. When this count expires, a local

"tick" is registered in the firmware. The tick is used when timing channel interrupts based on the

"Timer Load Count" value supplied in the timer configuration.

The value of "Timer Constant" is the number of QM sub-system clocks divided by 2 that

comprise a single "tick" in the accumulator firmware.

For example, if the QM sub-system clock is 350MHz, and the desired firmware "tick" is 20us,

the proper Timer Constant for this command is computed as follows:

Timer Constant = (350,000,000 cycles/sec) * (0.000020 sec) / (2 cycles)

Timer Constant = 3,500

The firmware initializes with a default constant value of 4375. This corresponds to firmware tick

of 25us.

The timer can be configured to 10, 20, 25 micro seconds using the following API:

Qmss_Result Qmss_configureAccTimer (Qmss_AccPriorityType type, uint16_t

timerConstant)

When a list buffer page is ready for processing, an interrupt is sent to the host CPU. The mapping

between accumulator channel and host interrupt is fixed; however, each accumulator channel can

be configured to any queue, or can be disabled, so there is a significant amount of flexibility in

how queues can be mapped to host interrupts.

To enable a channel use the following API:

Qmss_Result Qmss_programAccumulator (Qmss_AccPriorityType type, Qmss_AccCmdCfg

*cfg)

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 28

When an accumulator channel is disabled, it may still potentially fire one last interrupt to the host

processor. It does this to clear out all the descriptors that it is holding on its current page list at

the time of being disabled. It does verify that all packets have been read out of the monitored

queue.

To disable a channel use the following API:

Qmss_Result Qmss_disableAccumulator (Qmss_AccPriorityType type, uint16_t

timerConstant)

The host should acknowledge the interrupt and set the end of interrupt (EOI) vector to indicate to

the PDSP it is done with processing the current page. The PDSP will then start writing to the

freed page.

To acknowledge the interrupt use the following API:

Qmss_Result Qmss_ackInterrupt (uint8_t interruptNum, uint8_t value)

To set the EOI vector value use the following API:

Qmss_Result Qmss_setEoiVector (Qmss_IntdInterruptType type, uint8_t

interruptNum)

5.4 CPPI DESIGN DETAILS

The CPPI Low level driver supports the following CPDMAs:

• Serial Rapid IO

• Antenna Interface

• FFT Co-processor

• Packet Accelerator SubSystem

• Queue Manager SubSystem

It provides resource management for:

• Descriptors

• Receive channels

• Transmit channels

• Receive flows

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 29

It provides configuration of each of the CPPI blocks in each of the CPDMAs listed above.

It provides descriptor allocation, initialization and management functionality.

5.4.1 CPPI LLD Initialization

This api is the entry point into CPPI low level driver. The CPPI LLD is initialized only once in

the system using Cppi_init() API.

Cppi_Result Cppi_init (Cppi_GlobalConfigParams *cppiGblCfgParams)

This API initializes the parameters that define the characteristics of the CPPI. For example, per

CPDMA the number of receive channels, the number of transmit channels, number of flows that

are supported, memory mapped register addresses etc. These parameters are portable across SoC

making the LLD SoC independent. It is discussed further in the next section.

5.4.2 CPPI Device-Specific Initialization

The device-specific initialization is performed as a part of the Cppi_init() API.

The structure is as follows. Refer to the appendix for a sample configuration.

typedef struct

{

 /** CPDMA this configuration belongs to */

 Cppi_CpDma dmaNum;

 /** Maximum supported Rx Channels */

 uint32_t maxRxCh;

 /** Maximum supported Tx Channels */

 uint32_t maxTxCh;

 /** Maximum supported Rx Flows */

 uint32_t maxRxFlow;

 /** Priority for all Rx transactions of this CPDMA */

 uint8_t rxPriority;

 /** Priority for all Tx transactions of this CPDMA */

 uint8_t txPriority;

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

 CSL_Cppidma_global_configRegs *gblCfgRegs;

 /** Rx Channel Config registers */

 CSL_Cppidma_rx_channel_configRegs *rxChRegs;

 /** Tx Channel Config registers */

 CSL_Cppidma_tx_channel_configRegs *txChRegs;

 /** Tx Channel Scheduler registers */

 CSL_Cppidma_tx_scheduler_configRegs *txSchedRegs;

 /** Rx Flow Config registers */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 30

 CSL_Cppidma_rx_flow_configRegs *rxFlowRegs;

}Cppi_GlobalConfigParams;

Table 9 CPPI Global Configuration Parameters Structure

 The function sets up the low-level driver with information pertaining to Rx priority, Tx priority,

maximum supported Rx channels, maximum supported Tx channels, maximum supported Rx

flows and memory-mapped register addresses to access the memory-mapped registers for each

CPPI CPDMA.

To reinitialize, the CPPI LLD must first be closed using the Cppi_exit() API. The LLD is not de-

initialized if any of the channels, flows or CPDMA instances are still enabled.

5.4.3 CPPI CPDMA Initialization

This function is called by the CPPI CPDMA driver or application to obtain a handle to the

CPDMA instance. It also initializes the global configuration pertaining to each CPPI CPDMA

that includes the Rx, Tx priority, write arbitration FIFO depth, receive starvation timeout and

QM base addresses.

Cppi_Handle Cppi_open (Cppi_CpDmaInitCfg *initCfg)

The function returns a CPDMA object handle that should be used for all channel and flow

management.

This function can be called any number of times but the CPDMA memory-mapped registers are

configured once, when the function is called for the first time. Any further calls to this function

returns the CPDMA object handle created during the first call.

To reinitialize, the CPPI CPDMA instance must first be closed using the Cppi_close() API. The

CPDMA instance is not closed if any of the channels or flows belonging to the CPDMA are still

enabled.

5.4.4 CPPI Resource Allocation

This section discusses the CPPI low-level driver resource allocation in detail.

5.4.4.1 Descriptors

The memory for descriptors that was allocated by the system and set up during the Qmss_init()

API can be taken back by the drivers/applications via the Cppi_initDescriptor() API. The

descriptor resources are managed by the LLD only if the manage descriptor flag

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 31

manageDescFlag was set when the descriptor memory region was created else it is up to the

caller to manage the descriptors.

Qmss_QueueHnd Cppi_initDescriptor (Cppi_DescCfg *descCfg, uint32_t
*numAllocated)

The caller needs to specify a few input parameters via the Cppi_DescCfg structure. The

parameters are described below:

• Number of descriptors to be allocated

• Memory region to allocate from

• Destination queue where the descriptors are stored and returned to caller

OR

• Destination queue type

• Descriptor type – host, monolithic

• Configuration values for fields in the descriptor

o Return Policy
o Return Push Policy
o Return Queue number and Return Queue Manager
o Protocol Specific data location

The input parameter structure for Cppi_DescCfg is shown below:

typedef struct

{

 /** Memory Region corresponding to the descriptor. */

 uint32_t memRegion;

 /** Number of descriptors that should be configured with value below */

 uint32_t descNum;

 /** Queue where the descriptor is stored. If destQueueNum is set to

 QMSS_PARAM_NOT_SPECIFIED then the next available queue of type

 Qmss_QueueType will be allocated */

 int32_t destQueueNum;

 /** If destQueueNum is set to QMSS_PARAM_NOT_SPECIFIED then the next

 available queue of type Qmss_QueueType will be allocated */

 Qmss_QueueType queueType;

 /** Descriptor configuration parameters */

 /** Indicates if the descriptor should be initialized with parameters
 * listed below */
 Cppi_InitDesc initDesc;

 /** Type of descriptor – Host or Monolithic */

 Cppi_DescType descType;

 /** Indicates return Queue Manager and Queue Number. If both qMgr and qNum

 * in returnQueue is set to QMSS_PARAM_NOT_SPECIFIED then the destQueueNum

 * is configured in returnQueue of the descriptor

 */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 32

 Qmss_Queue returnQueue;

 /** Indicates presence of EPIB */

 Cppi_EPIB epibPresent;

 /** Union contains configuration that should be initialized in for host or

 * monolithic descriptor. The configuration for host or monolithic

 * descriptor is choosen based on "descType" field.

 * The approriate structure fields must be specified if "initDesc" field

 * is set to CPPI_INIT_DESCRIPTOR.

 */

 union{

 /** Host descriptor configuration parameters */

 Cppi_HostDescCfg host;

 /** Monolithic descriptor configuration parameters */

 Cppi_MonolithicDescCfg mono;

 }cfg;

}Cppi_DescCfg;

Table 10 CPPI Descriptor Configuration Structure

The function allocates the requested number of descriptors from the specified memory region.

It configures all the allocated descriptors based on the descriptor type with the specified

configuration parameters if the initDesc flag is set. The idea is to have the descriptor fields that

don’t change filled in at init time rather than at runtime to save some cycles.

The function informs the caller about the actual number of descriptors allocated using the

numAllocated output parameter. This is done to handle a case where the requested number of

descriptors is not available; the function allocates what is available and informs the caller of the

same.

The decision of which memory region to use is based on factors such as:

• Size of descriptor

• Type of memory the descriptor is allocated from e.g., L2, shared, DDR memory

• Reserved allocation for a particular IP block

Since the memory regions are configured by the system during the initialization phase, the LLD

provides an API that aids drivers and application decide on the memory region to allocate from.

The function Qmss_getMemoryRegionCfg() returns the memory region configuration parameters

such as memory region index, descriptor base address, and number and size of descriptors for all

supported memory regions.

Qmss_Result Qmss_getMemoryRegionCfg (Qmss_MemRegCfg *memRegInfo)

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 33

Once the function determines descriptors are available in the requested memory region, they are

allocated and pushed onto the destination queue specified in the input parameter. The destination

queue can be allocated as discussed in the queue allocation section.

The handle to the allocated destination queue is returned to the caller.

5.4.4.2 Receive Channels

The CPPI LLD manages the allocation and freeing of CPPI receive channels. The maximum

number of receive channels supported per CPDMA is configured in the LLD via the CPPI global

configuration parameter structure (Cppi_GlobalConfigParams).

Users call the following API to obtain a channel:

Cppi_ChHnd Cppi_rxChannelOpen (Cppi_Handle hnd, Cppi_RxChInitCfg *cfg, uint8_t
*isAllocated)

There are 2 ways to open a receive channel:

1. Request the channel number

The API allows the caller to specify a valid channel number via the Cppi_RxChInitCfg

structure. If the channel is free, the LLD allocates the channel and marks it as used. The

channel is configured via the channel’s memory-mapped registers.

If the channel was already allocated (i.e., marked as used during a previous allocation call),

an existing channel handle is returned. The channel is not reconfigured.

In other words the channel is configured only if it is a new channel allocation. To change the

channel configuration the channel must first be closed and reopened with a new

configuration.

2. LLD allocates the receive channel

The caller has an option to let the CPPI LLD allocate the resource by setting the channel

number field in the Cppi_RxChInitCfg structure to CPPI_PARAM_NOT_SPECIFIED. The

LLD allocates the next available channel and marks it as used. Allocation starts with the

lowest channel number.

The channel is configured via the channel’s memory-mapped registers.

In both cases a handle to the newly opened channel is returned to the caller that must be used as

an input parameter when calling the channel management API for the allocated channel.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 34

The API also provides the caller with information on whether or not the handle returned for the

requested channel number is due to a new channel allocation via the isAllocated output

parameter. This parameter returns the reference count that indicates the number of times the

channel was opened.

 The LLD maintains a reference count per receive channel which is incremented every time the

channel is allocated and decremented when the channel is closed via the Cppi_channelClose()

API. The channel is reallocated only when the reference count becomes zero.

5.4.4.3 Transmit Channels

The CPPI LLD manages the allocation and freeing of CPPI transmit channels. The maximum

number of transmit channels supported per CPDMA is configured in the LLD via the CPPI

global configuration parameter structure (Cppi_GlobalConfigParams).

Users call the following API to obtain a channel:

Cppi_ChHnd Cppi_txChannelOpen (Cppi_Handle hnd, Cppi_TxChInitCfg *cfg, uint8_t
*isAllocated)

There are 2 ways to open a transmit channel:

1. Request the channel number

The API allows the caller to specify a valid channel number via the Cppi_TxChInitCfg

structure. If the channel is free, the LLD allocates the channel and marks it as used. The

channel is configured via the channel’s memory-mapped registers.

If the channel was already allocated (i.e., marked as used during a previous allocation call),

an existing channel handle is returned. The channel is not reconfigured.

In other words the channel is configured only if it is a new channel allocation. To change the

channel configuration the channel must first be closed and reopened with a new

configuration.

2. LLD allocates the channel

The caller has an option to let the CPPI LLD allocate the resource by setting the channel

number field in the Cppi_TxChInitCfg structure to CPPI_PARAM_NOT_SPECIFIED. The

LLD allocates the next available channel and marks it as used. Allocation starts with the

lowest channel number.

The channel is configured via the channel’s memory-mapped registers.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 35

In both cases a handle to the newly opened channel is returned to the caller that must be used as

an input parameter when calling the channel management API for the allocated channel.

The API also provides the caller with information on whether or note the handle returned for the

requested channel number is due to a new channel allocation via the isAllocated output

parameter. This parameter returns the reference count that indicates the number of times the

channel was opened.

The LLD maintains a reference count per transmit channel which is incremented every time the

channel is allocated and decremented when the channel is closed via the Cppi_channelClose()

API. The channel is reallocated only when the reference count becomes zero.

5.4.4.4 Receive Flow

The CPPI LLD manages the allocation and freeing of CPPI receive flows. The maximum number

of receive flows supported per CPDMA is configured in the LLD via the CPPI global

configuration parameter structure (Cppi_GlobalConfigParams).

Users call the following API to obtain a flow:

Cppi_FlowHnd Cppi_configureRxFlow (Cppi_Handle hnd, Cppi_RxFlowCfg *cfg,
uint8_t *isAllocated)

There are 2 ways to open a receive flow:

1. Request the receive flow number

The API allows the caller to specify a valid receive flow number flowIdNum in the

Cppi_RxFlowCfg structure. If the flow is free, the LLD allocates the flow and marks it as

used. The flow is configured via the flow’s memory-mapped registers.

If the flow was already allocated (i.e., marked as used during a previous allocation call), an

existing flow handle is returned. The flow is not reconfigured.

In other words the flow is configured only if it is a new flow allocation. To change the flow

configuration the flow must first be closed and reopened with a new configuration.

Note: The receive channels using the flow MUST be disabled or paused for the new

configuration to take effect.

2. LLD allocates the receive flow

The caller has an option to let the CPPI LLD allocate the resource by setting the flowIdNum

field in the Cppi_RxFlowCfg structure to CPPI_PARAM_NOT_SPECIFIED. The LLD

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 36

allocates the next available flow and marks it as used. Allocation starts with the lowest flow

number.

The flow is configured via the flow’s memory-mapped registers.

Note: The receive channels using the flow MUST be disabled or paused for the new

configuration to take effect.

In both cases a handle to the newly opened flow is returned to the caller that must be used as an

input parameter when calling flow management API for the allocated flow.

The API also provides the caller with information on whether or not the handle returned for the

requested flow number is due to a new flow allocation via the isAllocated output parameter.

This parameter returns the reference count that indicates the number of times the flow was

opened.

The LLD maintains a reference count per flow which is incremented every time the flow is

allocated and decremented when the flow is closed via the Cppi_closeRxFlow() API. The flow is

reallocated only when the reference count becomes zero.

5.4.5 Descriptor Management

The CPPI LLD defines 3 types of descriptor:

1. Host Descriptor.

The format is shown below:

Packet Info

(12 bytes)

Buffer Info

(8 bytes)

Linking Info

(4 bytes)

Original Buffer Info

(8 bytes)

Extended Packet Info Block (Optional)

Includes Timestamp and Software Data

(16 bytes)

Protocol Specific Data (Optional)

(0 to M bytes where M is a multiple of 4)

Other SW Data (Optional and User Defined)

Table 11 CPPI Host Descriptor

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 37

The host descriptor data structure is as follows:

typedef struct {

 /** Descriptor type, packet type, protocol specific region location,

 packet length */

 uint32_t descInfo;

 /** Source tag, Destination tag */

 uint32_t tagInfo;

 /** EPIB present, PS valid word count, error flags, PS flags, return

 policy, return push policy, packet return QM number, packet return

 queue number */

 uint32_t packetInfo;

 /** Number of valid data bytes in the buffer */

 uint32_t buffLen;

 /** Byte aligned memory address of the buffer associated with this

 descriptor */

 uint32_t buffPtr;

 /** 32-bit word aligned memory address of the next buffer descriptor */

 uint32_t nextBDPtr;

 /** Completion tag, original buffer size */

 uint32_t origBufferLen;

 /** Original buffer pointer */

 uint32_t origBuffPtr;

 /** Optional EPIB word0 */

 uint32_t timeStamp;

 /** Optional EPIB word1 */

 uint32_t softwareInfo0;

 /** Optional EPIB word2 */

 uint32_t softwareInfo1;

 /** Optional EPIB word3 */

 uint32_t softwareInfo2;

 /** Optional protocol specific data */

 uint32_t psData;

}Cppi_HostDesc;

Table 12 CPPI Host Descriptor Structure

2. Monolithic Descriptor

The format is shown below:

Packet Info

(12 bytes)

Extended Packet Info Block (Optional)

Includes PS Bits, Timestamp, and SW Data

Words

(20 bytes)

Protocol Specific Data (Optional)

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 38

(0 to M bytes where M is a multiple of 4)

Null Region (0 to 255 bytes)

Packet Data

(0 to 64K – 1)

Other SW Data (Optional and User Defined)

Table 13 CPPI Monolithic Descriptor

The monolithic descriptor data structure is as follows:

typedef struct {

 /** Descriptor type, packet type, data offset, packet length */

 uint32_t descInfo;

 /** Source tag, Destination tag */

 uint32_t tagInfo;

 /** EPIB present, PS valid word count, error flags, PS flags, return push

 policy, packet return QM number, packet return queue number */

 uint32_t packetInfo;

 /** NULL word to align the extended packet words to a 128 bit boundary */

 uint32_t Reserved;

 /** Optional EPIB word0 */

 uint32_t timeStamp;

 /** Optional EPIB word1 */

 uint32_t softwareInfo0;

 /** Optional EPIB word2 */

 uint32_t softwareInfo1;

 /** Optional EPIB word3 */

 uint32_t softwareInfo2;

 /** Optional protocol specific data */

 uint32_t psData;

}Cppi_MonolithicDesc;

Table 14 CPPI Monolithic Descriptor Structure

The CPPI LLD provides various inline functions to set and retrieve every field in host and

monolithic descriptors.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 39

5.4.6 Programming Considerations

This section discusses the various programming considerations that must be taken into account

when programming CPPI and QMSS.

1. Multicore versus single core

CPPI and QMSS low-level drivers are designed to be shared by various drivers and

applications using different CPDMAs. They also manage resource allocation of different

resources. If the drivers/applications are run on different cores, it implies that the global data

structure access must be protected by cross-core locks. This also implies the global data

structures be placed in shared memory. The LLD has callout functions that can be modified

to suit these needs.

If running on a single core, these data structures can be mapped to local memory.

2. Single thread versus multiple threads

Resource allocation APIs and access to global data structures must be protected by critical

sections to ensure intended results. The LLD has callout functions that can be modified to

suit these needs.

3. Descriptor

• Type of descriptor – The CPPI provides two types of descriptors: Host and Monolithic.

The decision to use either or both is based on the driver/application requirement, size of

data buffer, number of buffers dynamically linked, when and how the data arrives, ease

of use, etc.

• Size of descriptor – Depends on optional descriptor field usage. For monolithic

descriptors it also depends on size of data. The descriptors must be a multiple of 16

bytes.

• Number of descriptors – Depends on speed of the peripheral, burst modes, interrupt or

polling mode, etc. It is necessary to ensure the host/DMAs are not starved before the

descriptors are processed and recycled back to the queues. The number of descriptors in

a memory region is specified as a power of 2, beginning with 2^5.

• Alignment – Descriptors have to be aligned on the 16-byte boundary.

4. Memory Regions

Memory regions can be set up either statically at initialization time if the descriptor

requirement is known up front or dynamically at runtime.

QMSS has 20 different memory regions and each region supports only one descriptor size.

Also consider the memory where the descriptor is allocated from.

Linking RAM must be aligned on the 16-byte boundary.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 40

5. Queues

• Number of queues – Allocating one or more queues for each operation. Queues will be

required to store free transmit descriptors, to transmit a packet, and to receive a packet.

Completion queues are required to recycle the packet if the recycling is done by host. It

is possible to have the hardware recycle the descriptor by specifying the return queue

manager/number in the descriptor. Queues are logical entities with low overheads. They

can also be used to store intermediate data, as FIFOs, etc.

• Type of queue – Deciding on which queue to allocate for what purpose. E.g., using

queues with accumulation and interrupt support receive queues, using queues with

starvation counters for free queues, etc.

• Queue chaining – Queue chaining is a powerful concept where the output queue of one

peripheral can be the input queue of another. This requires careful planning of queue use

and recycling.

6. Receive Flows

Flows are complicated but provide optimal use of buffer memory by specifying which free

descriptor queue to use based on packet size. Refer to the CPPI user guide to obtain a

description of configurable fields.

7. Interrupt versus polling mode

The mode chosen can have significant impact on performance and latency. The host can

determine the completion of data transfer using:

a. Interrupts

The application can program the accumulator and map it to the correct Interrupt

Service Routine to be called when either the high priority or low priority of the

accumulators have popped descriptors from a queue and placed the descriptor

pointers into a host list buffer.

b. Polling

Reading one of the queue manager’s status registers to check if any descriptors

have been queued. This can be accomplished by either:

� Popping the descriptor of a queue until it returns a non-NULL descriptor

pointer using the Qmss_queuePop() API

� Reading the queue’s status register until it returns a non-zero count using

the Qmss_getQueueEntryCount() API

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 41

5.4.7 Initialization Path

The CPPI LLD and QMSS LLD have to be initialized by the system once. Refer to the QMSS

LLD initialization section and CPPI LLD initialization section for design details. Here we discuss

the steps involved in initializing the LLDs from the caller’s perspective.

� Step 1: QMSS low-level driver init

o Fill in the linking RAM information
o Decide on the number of linking RAMs required.
o Whether the RAM is on-chip or off-chip
o Decide on the maximum number of descriptors. This will determine the size of the
linking RAM.

o Linking RAM address must be a global memory address.
o Download PDSP firmware if accumulator is used for interrupts.

See Table 4 QMSS Initialization Configuration Structure for Qmss_InitCfg structure

definition.

See Table 5 QMSS Global Configuration Parameters Structure for qmssGblCfgParams

structure definition.

� Step 2: CPPI low-level driver init.

See Table 9 CPPI Global Configuration Parameters Structure for cppiGblCfgParams

structure definition.

� Step 3: Creating memory regions

o Create as many memory regions as required. Maximum of 20 are supported.
o Fill in the memory region information.
o Descriptor base address. This must be a global memory address.
o Number of descriptor in this region
o Size of descriptor
o Whether descriptor should be managed by LLD
o Memory region number to configure

� If the memory region is allocated by the LLD, it is a sequential allocation. In

this case the start index is computed by the LLD.

� If a memory region to configure is specified by the user then a correct start

index must be specified by the user.

� Step 4: Open a CPDMA instance

o Fill in the CPDMA-related configuration parameters.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 42

CPDMA number is one of the supported CPDMA listed below.

The CPDMA types can differ from SoC to SoC and are therefore defined in the CSL layer to

make the LLD device independent. An example definition for a SOC.

File: csl_cppi.h

/** CPPI maximum number of CPDMAs */

#define CPPI_MAX_CPDMA 6

typedef enum

{

 /** SRIO */

 SRIO_CPDMA = 0,

 /** AIF */

 AIF_CPDMA,

 /** FFTC A */

 FFTC_A_CPDMA,

 /** FFTC B */

 FFTC_B_CPDMA,

 /** PASS */

 PASS_CPDMA,

 /** QMSS */

 QMSS_CPDMA

}Cppi_CpDma;

� Step 5: Check if CPDMA is in loopback mode. Enable or disable loopback based on desired

functionality. Refer to the CPPI user guide to check the normal operating mode for a given

CPDMA.

� Step 6: Obtain the allocated descriptors

o Memory region to allocate the descriptors from
o Number of descriptors to be allocated
o Queue where the descriptor is stored and returned to user
o Indicates if the descriptor should be initialized
o Fill in the initialization parameters for host or monolithic descriptor

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 43

5.4.8 Transmit

The figure illustrates the steps involved in transmitting a packet.

Figure 5 Transmit

5.4.8.1 Transmit Path – Detailed Steps

This section lists the steps involved in setting up the transmit channels, transmit queues,

transmitting a packet, and post-processing.

Note: These steps might be part of the initialization sequence depending on the

driver/application architecture.

� Transmit channel open

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 44

o Fill in the transmit channel configuration details.
o Specify the channel number or let LLD allocate it.
o Transmit scheduler priority for this channel.
o Channel can be enabled when opened
OR

Enable it later using the Cppi_channelEnable() API.

� Set up the transmit queue.

o Recommendation is to use the queues with hardware threshold status. These queues
are reserved for every CPDMA. Refer to Table 3 Sample Queue Allocation for details

on queue allocation.

o This queue will be used to queue transmit packets.

� Set up the transmit completion queue.

o Recommendation is to use the queues with accumulation and interrupt support. There
are low priority and high priority queues available. Refer to Table 3 Sample Queue

Allocation for details on queue allocation.

Note: There need not be a separate transmit completion queue. The transmit completion queue

can be the transmit free BD queue.

� Setup the transmit free queue with host/monolithic descriptors.

o This queue will be used to get free descriptor for transmission. Recommendation is to
use the queues with starvation counters. Refer to Table 3 Sample Queue Allocation

for details on queue allocation.

o Specify memory region to allocate descriptors from.
o Number of descriptors.
o Destination queue number to store the allocated descriptor as decided above.
o Initialization parameters for host/monolithic descriptor
o Return policy, return push policy, PS location for host descriptors
o Data offset, return push policy for monolithic descriptors
o Return queue number, EPIB present for both
In this case the return queue is the transmit completion queue opened in step 3.

� Program the accumulator if interrupt mode is used for transmit completion notification. The

list address provided for accumulation must be a global address.

� Configure the transmit queue threshold

o Choose when the threshold should be asserted. If threshold is high the status is
asserted when the size of the queue is at least equal to the threshold value. If threshold

is low the status is asserted when the size of the queue is less than the threshold value.

If threshold is set to zero, QM will not trigger the CDMA. The threshold value is

encoded as 0'h3ff when it is ten or higher. It is (2^threshold-1) in the internal

representation for other values.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 45

� Enable the transmit channel if it is not enabled as part of step 1

� Preparing the packet to send

o Get a free packet descriptor.
o Copy data to transmit
o Populate the descriptor fields
o Set up any optional data.

� Optional fields are timestamp, software information, and protocol specific

data

o Update packet length

� Send the packet.

o Use the queue push functions to write to transmit queue

Check the QMSS enqueue section for different versions of the push API.

� Recycling the descriptor.

Upon receiving a transmit completion interrupt or polling the transmit completion queue,

process the posted descriptors.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 46

5.4.9 Receive

The figure illustrates the steps involved in receiving a packet.

Figure 6 Receive

5.4.9.1 Receive Path – Detailed Steps

This section lists the steps involved in setting up the receive channels, receive queues, receiving a

packet, and post-processing.

Note: These steps might be part of the initialization sequence depending on the

driver/application architecture.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 47

� Receive channel open

o Fill in the receive channel configuration details.
o Specify the channel number or let LLD allocate it.
o Channel can be enabled when opened if the flow is already configured
OR

Enable it later using the Cppi_channelEnable() API.

� Setup the receive queue.

o Recommendation is to use the queues with accumulation and interrupt support. There
are low priority and high priority queues available. Refer to Table 3 Sample Queue

Allocation for details on queue allocation.

o This queue will be used by the hardware to queue received packets.

� Set up the receive free queue.

o Recommendation is to use the queues with starvation counters. Refer to Table 3
Sample Queue Allocation for details on queue allocation.

� Set up the receive free queue with descriptors.

o Specify memory region to allocate descriptors from.
o Number of descriptors.
o Destination queue number to store the allocated descriptor.
The receive descriptors have to be populated with data buffers for host descriptors

only. For this purpose we store them temporarily on a general purpose queue. The

data buffer address must be a global memory address.

o Initialization parameters for host/monolithic descriptor
o Return policy, return push policy, PS location for host descriptors
o Data offset, return push policy for monolithic descriptors
o Return queue number, EPIB present for both types of descriptors
In this case it is the receive free queue opened above.

� Attach data buffers to host descriptors. Pop descriptors off the general purpose queue, attach

data buffers and then push them to the receive free queue.

� Program the accumulator if interrupt mode is used for receive notification. The list address

provided for accumulation must be a global address.

� Configure receive flow.

o If the receive channel using this flow is already enabled, disable or pause it.
o Fill in the receive flow configuration details.
o Specify flow id or have the LLD allocate it.
o At a minimum, configure

� Receive destination queue number

� Free queue to get descriptors from

� Descriptor type

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 48

� Data offset for monolithic descriptors

� Enable channel

� Receive a packet

Upon receiving an interrupt or polling the receive queue, process the posted Rx packet.

� Replenish the receive data buffer

o Allocate a new data buffer and attach to the current descriptor. This is done since the
data buffer in the current descriptor might be used for further processing without

having to copy the contents into another buffer.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 49

5.4.10 Error Processing

5.4.10.1 Descriptor errors

static inline uint32_t Cppi_getDescError (Cppi_DescType descType, Cppi_Desc

*descAddr)

This function retrieves the error flags from the descriptor. API provided by the CPPI LLD.

5.4.10.2 Descriptor Starvation Errors

extern uint32_t Qmss_getStarvationCount (Qmss_QueueHnd hnd);

The starvation count is incremented every time the Free Descriptor/Buffer queue is read when

empty. This function returns the starvation count of the queue. API provided by the QMSS LLD.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 50

6 Memory Considerations

The queue manager and CPPI low-level driver manage shared resources. It is designed to be used

by multiple drivers and applications running on multiple cores. This implies certain information

related to resource management is placed in shared memory.

To handle these requirements the global data structures will be in shared memory.

Data sections are created for all global variables as shown below:

/* CPPI instance count to prevent reinitialization*/

#pragma DATA_SECTION (cppiInstance, ".cppi");

uint8_t cppiInstance = 0;

/* CPPI object */

#pragma DATA_SECTION (cppiObject, ".cppi");

Cppi_Obj cppiObject;

/* Maintain status of queues */

#pragma DATA_SECTION (queueFree, ".qmss");

uint8_t queueFree[QMSS_MAX_QUEUES];

/* QMSS object */

Qmss_Obj qmssGObj;

#pragma DATA_SECTION (qmssGObj, ".qmss");

/* QMSS instance count to prevent reinitialization */

#pragma DATA_SECTION (qmssInstance, ".qmss");

uint32_t qmssInstance = 0;

These sections have to be placed in the shared memory via the linker.cmd file:

MEMORY

{

 L2SRAM (RWX) : org = 0x800000, len = 0x100000

 MSMCSRAM (RWX) : org = 0xc000000, len = 0x200000

}

SECTIONS

{

 .qmss: load >> MSMCSRAM

 .cppi: load >> MSMCSRAM

}

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 51

For memory allocations, the CPPI driver requires a heap to be created. An example of creation of

heap in shared memory is provided in the “sample.cfg” file.

This heap is created in shared memory if CPPI resources are allocated from multiple cores. If a

single core does all the resource allocation, the heap can be placed in local L2 memory.

When the heap is placed in shared memory it MUST be a separate heap used only by CPPI to

avoid false sharing issues when caches are enabled.

The example code uses memory allocation APIs from IPC to allocate memory from shared

memory to demonstrate channel and flow allocation from multiple cores.

Below is the code snippet used in the “example” to initialize shared heap.

/* Handle to CPPI heap in shared memory */

void myStartupFxn (void)

{

 MultiProc_setLocalId (CSL_chipReadReg (CSL_CHIP_DNUM));

}

/* Initialize heap in shared memory using IPC */

Ipc_start();

Note: If all the drivers and applications using the LLD are running on the same core, the global

data structures can be placed in memory local to the core. The heap can be created in local

memory as well.

Below is the code snippet used in the “test” to initialize local heap.

/* Handle to CPPI heap in local memory using BIOS XDC */

IHeap_Handle cppiHeap;

static void cppiHeapInit ()

{

 cppiHeap = HeapMem_Handle_upCast (cppiLocalHeap);

}

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 52

7 Critical Sections

The resources of CPPI and QMSS low-level drivers are shared by various users. The drivers and

applications could be running on different cores. They also manage resource allocation of

different resources.

Resource allocation APIs and access to global data structures must be protected by critical

sections to ensure intended results.

Critical sections should provide protection against preemption. If the drivers/applications are run

on different cores, the critical sections should also define cross-core locks.

The LLD has callout functions that can be modified to suit these needs. Sample callouts are

provided in the OSAL layer discussed in the next section.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 53

8 OS Considerations

The CPPI and QMSS low-level drivers are OS-independent.

The LLDs have callouts to functions such as critical section enter and exit, malloc, free, log.

8.1 CPPI OSAL

The OSAL is the operating system abstraction layer which is used to port the CPPI driver to a

specific OS. The OSAL callouts are implemented in the “cppi_osal.h” header file and need to

be ported by the application developers to their specific operating system.

8.1.1 Memory Allocation

The CPPI driver allocates memory only in control path. There are no memory allocations done in

the data path.

Internally the CPPI driver uses the Cppi_osalMalloc macro to perform all memory allocations.

The OSAL adaptation layer ports this macro to the following API prototype:

void* Osal_cppiMalloc (uint32_t num_bytes)

The parameter numBytes reflects the total amount of memory that is requested.

8.1.2 Memory Cleanup

Internally the CPPI driver uses the Cppi_osalFree macro to perform all memory cleanups. The

OSAL adaptation layer ports this macro to the following API prototype:

void Osal_cppiFree (void* ptr, uint32_t size)

The parameter ptr reflects the address of the memory block which needs to be cleaned up. The

parameter size reflects the size of the memory which is being cleaned up.

8.1.3 Critical Section Enter

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 54

Internally the CPPI driver uses the Cppi_osalCsEnter macro to begin a critical section. The

OSAL adaptation layer ports this macro to the following API prototype:

void* Osal_cppiCsEnter (void)

The return parameter is an opaque handle used to lock the critical section.

The function protects when accesses are performed from:

o Multiple cores
o Multiple threads on single core

8.1.4 Critical Section Exit

Internally the CPPI driver uses the Cppi_osalCsExit macro to end a critical section. The OSAL

adaptation layer ports this macro to the following API prototype:

void Osal_cppiCsExit (void* CsHandle)

The parameter CsHandle is used to unlock the critical section.

8.1.5 Logging API

Internally the CPPI driver uses the Cppi_osalLog macro to perform all logging operations. The

OSAL adaptation layer ports this macro to the following API prototype:

void Osal_cppiLog(String fmt, ...)

The parameter fmt is a printf style formatted string. This should only be defined and used for

debugging purposes.

8.1.6 Memory Access Hooks

The CPPI LLD requires the data structures to be located in shared memory when it is used in a

multi-core system. These data structures need to be synchronized to ensure that the contents of

the cache and memory are always in sync with each other.

All cache coherency operations are performed only in control path.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 55

Internally the CPPI LLD uses Cppi_osalBeginMemAccess macro to indicate that an access to the

specified memory region is starting. The OSAL adaptation layer ports this macro to the following

API prototype:

void Osal_cppiBeginMemAccess(void* ptr, uint32_t size)

The function takes as parameters the address of the memory & number of bytes which are being

accessed. The memory if cached needs to be invalidated so that the contents of the cache are

reloaded back from the actual memory. This will ensure that there is no stale data in the cache.

Internally the CPPI LLD uses Cppi_osalEndMemAccess macro to indicate that an access to the

specified memory region is ending. The OSAL adaptation layer ports this macro to the following

API prototype:

void Osal_cppiEndMemAccess(void* ptr, uint32_t size)

The function takes as parameters the address of the memory & number of bytes which are being

accessed. The memory if cache needs to be written back so that the contents of the cache are

synched up with the actual memory. This is true in the case of Write-back cache however if the

caches are operating in Write through mode this API could be a NOP since the cache contents

have already been written back to actual memory.

8.2 QMSS OSAL

The OSAL is the operating system abstraction layer which is used to port the QMSS driver to a

specific OS. The OSAL callouts are implemented in the “qmss_osal.h” header file and need to

be ported by the application developers to their specific operating system.

8.2.1 Memory Allocation

The QMSS driver allocates memory only in control path. There are no memory allocations done

in the data path.

Internally the QMSS driver uses the Qmss_osalMalloc macro to perform all memory allocations.

The OSAL adaptation layer ports this macro to the following API prototype:

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 56

void* Osal_qmssMalloc (uint32_t num_bytes)

The parameter numBytes reflects the total amount of memory that is requested.

8.2.2 Memory Cleanup

Internally the QMSS driver uses the Qmss_osalFree macro to perform all memory cleanups. The

OSAL adaptation layer ports this macro to the following API prototype:

void Osal_qmssFree (void* ptr, uint32_t size)

The parameter ptr reflects the address of the memory block which needs to be cleaned up. The

parameter size reflects the size of the memory which is being cleaned up.

8.2.3 Critical Section Enter

Internally the QMSS driver uses the Qmss_osalCsEnter macro to begin a critical section. The

OSAL adaptation layer ports this macro to the following API prototype:

void* Osal_qmssCsEnter (void)

The return parameter is an opaque handle used to lock the critical section.

The function protects when accesses are performed from:

o Multiple cores
o Multiple threads on single core

8.2.4 Critical Section Exit

Internally the QMSS driver uses the Qmss_osalCsExit macro to end a critical section. The

OSAL adaptation layer ports this macro to the following API prototype:

void Osal_qmssCsExit (void* CsHandle)

The parameter CsHandle is used to unlock the critical section.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 57

8.2.5 Critical Section Enter

Internally the QMSS driver uses the Qmss_osalMtCsEnter macro to begin a critical section for

protection against multiple threads when cross-core protection is not required. The OSAL

adaptation layer ports this macro to the following API prototype:

void* Osal_qmssMtCsEnter (void)

The return parameter is an opaque handle used to lock the critical section.

8.2.6 Critical Section Exit

Internally the QMSS driver uses the Qmss_osalMtCsExit macro to end a critical section started

using Qmss_osalMtCsEnter macro. The OSAL adaptation layer ports this macro to the following

API prototype:

void Osal_qmssMtCsExit (void* CsHandle)

The parameter CsHandle is used to unlock the critical section.

8.2.7 Logging API

Internally the QMSS driver uses the Qmss_osalLog macro to perform all logging operations.

The OSAL adaptation layer ports this macro to the following API prototype:

void Osal_qmssLog(char* fmt, ...)

The parameter fmt is a printf style formatted string. This should only be defined and used for

debugging purposes.

Sample functions are provided in the “sample_osal.c” and “infrastructure_osal.c” files. These can

be ported to any OS. The porting guidelines are mentioned in the integration section

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 58

8.2.8 Memory Access Hooks

The QMSS LLD requires the data structures to be located in shared memory when it is used in a

multi-core system. These data structures need to be synchronized to ensure that the contents of

the cache and memory are always in sync with each other.

All cache coherency operations are performed only in control path.

Internally the QMSS LLD uses Qmss_osalBeginMemAccess macro to indicate that an access to

the specified memory region is starting. The OSAL adaptation layer ports this macro to the

following API prototype:

void Osal_qmssBeginMemAccess(void* ptr, uint32_t size)

The function takes as parameters the address of the memory & number of bytes which are being

accessed. The memory if cached needs to be invalidated so that the contents of the cache are

reloaded back from the actual memory. This will ensure that there is no stale data in the cache.

Internally the QMSS LLD uses Qmss_osalEndMemAccess macro to indicate that an access to the

specified memory region is ending. The OSAL adaptation layer ports this macro to the following

API prototype:

void Osal_qmssEndMemAccess(void* ptr, uint32_t size)

The function takes as parameters the address of the memory & number of bytes which are being

accessed. The memory if cache needs to be written back so that the contents of the cache are

synched up with the actual memory. This is true in the case of Write-back cache however if the

caches are operating in Write through mode this API could be a NOP since the cache contents

have already been written back to actual memory.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 59

9 Integration

The CPPI low-level driver depends on the following components:

o QMSS LLD
o CSL

The QMSS low-level driver depends on the following components:

o CSL

These dependent components have to be installed before the LLDs can be integrated. The CPPI

and QMSS low-level drivers are released in source code and in pre-built library. Applications can

decide how to use the low-level driver.

9.1 Pre-built Approach

In this approach the application developers decide to use the CPPI or QMSS driver pre-built

libraries as is. The following steps need to be performed:

a. The application developers modify their application configuration file to use the CPPI or

QMSS package.

var Cppi = xdc.loadPackage('ti.drv.cppi');

var Qmss = xdc.loadPackage('ti.drv.qmss');

b. Ensure that the XDCPATH is configured to have the path to the CPPI package.

c. Ensure that the XDCPATH is configured to have the path to the QMSS package.

d. This implies that XDC Configuration scripts will link the application using the

CPPI/QMSS driver libraries (Module.xs).

e. The application authors need to provide an OSAL implementation file for CPPI and

QMSS and ensure that this is linked with the application; failure to do so will result in

linking errors.

The OSAL source file should have the following CPPI OSAL functions implemented:

void* Osal_cppiMalloc (uint32_t num_bytes);

void Osal_cppiFree (void* ptr, uint32_t size);

void* Osal_cppiCsEnter (void);

void Osal_cppiCsExit (void* CsHandle);

void Osal_cppiLog (char* fmt, ...);

void Osal_cppiBeginMemAccess (void *ptr, uint32_t size);

void Osal_cppiEndMemAccess (void *ptr, uint32_t size);

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 60

Table 15 CPPI OSAL Functions

The OSAL source file should have the following QMSS OSAL functions implemented:

void* Osal_qmssMalloc (uint32_t num_bytes);

void Osal_qmssFree (void* ptr, uint32_t size);

void* Osal_qmssCsEnter (void);

void Osal_qmssCsExit (void* CsHandle);

void* Osal_qmssMtCsEnter (void);

void Osal_qmssMtCsExit (void* CsHandle);

void Osal_qmssLog (char* fmt, ...);

void Osal_qmssBeginMemAccess (void *ptr, uint32_t size);

void Osal_qmssEndMemAccess (void *ptr, uint32_t size);

Table 16 QMSS OSAL Functions

Note: Since the CPPI LLD depends on the QMSS LLD, the OSAL implementation for CPPI

should also have the QMSS implementations.

If the application is not using XDC then replace steps (a) and (b) above with the following steps

instead:

a. Append the include path to the top level CPPI package directory

b. Append the include path to the top-level QMSS package directory

c. Make sure the CPPI pre-built libraries are added to the application project and the library

search path is configured correctly.

d. Make sure the QMSS pre-built libraries are added to the application project and the

library search path is configured correctly.

This approach is highlighted in the CPPI and QMSS “example” projects.

9.2 Rebuild Library

In this approach the application developers decide to use the CPPI or QMSS driver source code

and add these files to the application project to rebuild the CPPI or QMSS driver code base. The

following steps need to be redone:

a. Application developers should port the file “cppi_osal.h” and “qmss_osal.h” to their

operating system environment. Developers are recommended to create a copy of this file

and place it in their application directory. They should use the file which is provided in

the CPPI and QMSS installation only as a template. The goal here should be to map the

Cppi_osalXXX macros and Qmss_osalXXX macros to the OS calls directly thus reducing

the overhead of an API callout. For example:

#define Cppi_osalMalloc Osal_biosMalloc
#define Qmss_osalMalloc Osal_biosMalloc

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 61

b. Application developers should port the file “cppi_types.h” and “qmss_types.h”to the

application environment. Developers are recommended to create a copy of this file and

place it in their application directory.

c. Append the include path to the top-level CPPI package directory

d. Append the include path to the top-level QMSS package directory

e. Add the CPPI or QMSS driver files listed in the src directory to the application build

files.

The approach above is highlighted in the CPPI and QMSS test directory.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 62

10 Phase II Additions

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 63

11 CHECKLIST

The below app note is a checklist for using CPPI and QMSS IP. It is provided to help users avoid

common mistakes made during configuration and help in debugging.

11.1 Setup related

o All addresses given to the hardware should be global addresses.
o The address should be aligned on a 16 byte boundary
o This includes External Linking RAM memory, any descriptor memory and accumulator
list.

11.2 Linking RAM

o 16K descriptors can be tracked using the internal linking RAM.
o Use External linking RAM for additional descriptors.

o Each entry MUST be 64 bit wide.
o Sum of internal and external memory MUST be equal to or greater than maximum
number of descriptors used in the system.

11.3 Memory region configuration

o 20 memory regions available.
o Memory region have to be configured in ascending order of memory addresses.
o Number of descriptors in the memory region

o MUST be a minimum of 32.
o MUST be 2^(5 or greater)
o Maximum supported value 2^20

o Size of each descriptor in the memory region MUST be a multiple of 16. Implies memory
address MUST be aligned on 16 byte boundary

o No overlapping memory regions
o Linking RAM MUST be equal to or greater than the total number of descriptors in all
memory region.

o LLD performs all the above checks when Qmss_insertMemoryRegion() API is called.

11.4 Push/pop

o Push is atomic only when descriptor address alone is written. i.e., Reg D is the only
register written. Does not need critical sections to protect from multicores or multithreads

pushing to the same queue.

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 64

o Use Queue Proxy when push descriptor address along with packet size and location
(head/tail) of queue. i.e., Reg C and Reg D are written. Queue Proxy provides multicore

protection. Critical sections to protect from multiple thread accesses are still required.

o Descriptor address must align on a size boundary that was configured in the memory
region the descriptor belonged to.

o Writing a NULL address will empty all the entries queued on the queue.
o The lower nibble of descriptor address during push contains the “Hint Size”. Hint size is
the size of the descriptor. Does not include data size. Minimum size is 16 bytes.

Maximum size is 256 bytes.

o Pop of descriptor address is atomic. i.e., Reg D is the only register read. Does not need
critical sections to protect from multiple cores or multiple threads popping from the same

queue.

o Popping the descriptor address along with packet size is not multicore/multithread safe.
i.e., Reg C and Reg D are read. It is possible that the descriptor is popped by another

core/task between the time taken to read the packet size and the descriptor address by the

first core/task.

o The lower nibble of descriptor address will contain the “Hint Size” if hint size was
specified during the push operation. Caller should clear the lower order 4 bits before

using the descriptor.

o Popping a NULL descriptor when queue should have had descriptors means the linking
RAM is corrupted.

o CPDMA lockup can be caused by
o Setting the hint size too small to cover the entire descriptor (packet info, buffer
info, extended info, ps words).

o Setting the buffer sizes smaller than the packet size.
o Zero byte buffers on middle of packet buffers

11.5 CPDMA configuration

o Configure the IP in correct operating mode. CPDMA Loopback mode is enabled by
default. For QMSS this is the normal operating mode. For other IPs such as SRIO, PA,

FFTC, AIF2, loopback mode must be disabled to send the descriptor out of CPDMA.

o QM base address in CPPI global register is configured. By default QM0 base address is
configured. Configure QM1-3 if required.

11.6 Statistics

Queue statistics that are available are

o Number of entries queued on the queue
o Total number of bytes that are contained in all of the packets that are currently queued on
the queue.

o Packet size of the packet queued at the head of the queue

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 65

o Starvation counter is incremented every time the Free Descriptor/Buffer queue is read by
hardware when queue is empty.

o Threshold status of the queue.
o The threshold bit is set for a queue if the number of element in a queue is above or
below a certain threshold number of items configured using Queue status

configuration Register D.

o The threshold bit is set for a queue if there is atleast 1 element on the queue when
the threshold is not set using Queue status configuration Register D.

o LLD provides APIs to retrieve above statistics.

CPPI related statistics are unique to each CPDMA. E.g, SRIO and QMSS do not provide any

descriptor tx/rx statistics. FFTC does. Check individual IPS.

11.7 INTERRUPTS

o Interrupt MUST be acknowledged and EOI register written to before another interrupt is
generated

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 66

12 APPENDIX

CPPI device-specific global configuration parameters - cppi_device.c file:

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 67

/**

 * @file cppi_device.c

 *

 * @brief

 * This file contains the device specific configuration and initialization routines

 * for CPPI Low Level Driver.

 *

 * \par

 * ==

 * @n (C) Copyright 2009, Texas Instruments, Inc.

 * @n Use of this software is controlled by the terms and conditions found

 * @n in the license agreement under which this software has been supplied.

 * ==

 * \par

 */

/* CPPI LLD includes */

#include <cppi_types.h>

/* CSL RL includes */

#include <ti/csl/cslr_device.h>

#include <ti/csl/cslr_cppidma_global_config.h>

#include <ti/csl/cslr_cppidma_rx_channel_config.h>

#include <ti/csl/cslr_cppidma_rx_flow_config.h>

#include <ti/csl/cslr_cppidma_tx_channel_config.h>

#include <ti/csl/cslr_cppidma_tx_scheduler_config.h>

#include <ti/csl/csl_cppi.h>

/** @addtogroup CPPI_LLD_DATASTRUCT

@{

*/

/** @brief CPPI LLD initialization parameters */

/* TODO These values are according to Sim release. Not all are accurate */

Cppi_GlobalConfigParams cppiGblCfgParams[CPPI_MAX_CPDMA] =

{

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_SRIO_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 16u,

 /** Maximum supported Tx Channels */

 (uint32_t) 16u,

 /** Maximum supported Rx Flows */

 (uint32_t) 20u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t) 0u,

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 68

 (void*) CSL_SRIO_CONFIG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_SRIO_CONFIG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_SRIO_CONFIG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_SRIO_CONFIG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_SRIO_CONFIG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

 (uint32_t) 0xFFFFFFFF,

 },

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_AIF_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 129u,

 /** Maximum supported Tx Channels */

 (uint32_t) 129u,

 /** Maximum supported Rx Flows */

 (uint32_t) 129u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

 (void*) CSL_AIF2_CFG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_AIF2_CFG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_AIF2_CFG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_AIF2_CFG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_AIF2_CFG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

 (uint32_t) 0xFFFFFFFF,

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 69

 },

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_FFTC_A_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 4u,

 /** Maximum supported Tx Channels */

 (uint32_t) 4u,

 /** Maximum supported Rx Flows */

 (uint32_t) 8u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

 (void*) CSL_FFTC_A_CONFIG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_FFTC_A_CONFIG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_FFTC_A_CONFIG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_FFTC_A_CONFIG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_FFTC_A_CONFIG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

 (uint32_t) 0xFFFFFFFF,

 },

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_FFTC_B_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 4u,

 /** Maximum supported Tx Channels */

 (uint32_t) 4u,

 /** Maximum supported Rx Flows */

 (uint32_t) 8u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Base address for the CPDMA overlay registers */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 70

 /** Global Config registers */

 (void*) CSL_FFTC_B_CONFIG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_FFTC_B_CONFIG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_FFTC_B_CONFIG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_FFTC_B_CONFIG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_FFTC_B_CONFIG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

 (uint32_t) 0xFFFFFFFF,

 },

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_PASS_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 24u,

 /** Maximum supported Tx Channels */

 (uint32_t) 9u,

 /** Maximum supported Rx Flows */

 (uint32_t) 32u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

 (void*) CSL_PA_SS_CFG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_PA_SS_CFG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_PA_SS_CFG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_PA_SS_CFG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_PA_SS_CFG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 71

 (uint32_t) 0xFFFFFFFF,

 },

 {

 /** CPDMA this configuration belongs to */

 Cppi_CpDma_QMSS_CPDMA,

 /** Maximum supported Rx Channels */

 (uint32_t) 32u,

 /** Maximum supported Tx Channels */

 (uint32_t) 32u,

 /** Maximum supported Rx Flows */

 (uint32_t) 64u,

 /** Priority for all Rx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Priority for all Tx transactions of this CPDMA */

 (uint8_t_t) 0u,

 /** Base address for the CPDMA overlay registers */

 /** Global Config registers */

 (void*) CSL_QM_SS_CFG_CPPI_DMA_GLOBAL_CFG_REGS,

 /** Tx Channel Config registers */

 (void*) CSL_QM_SS_CFG_CPPI_DMA_TX_CFG_REGS,

 /** Rx Channel Config registers */

 (void*) CSL_QM_SS_CFG_CPPI_DMA_RX_CFG_REGS,

 /** Tx Channel Scheduler registers */

 (void*) CSL_QM_SS_CFG_CPPI_DMA_TX_SCHEDULER_CFG_REGS,

 /** Rx Flow Config registers */

 (void*) CSL_QM_SS_CFG_CPPI_DMA_RX_FLOW_CFG_REGS,

 /** Queue Manager 0 base address register */

 (uint32_t) 0x02a20000,

 /** Queue Manager 1 base address register */

 (uint32_t) 0x02a30000,

 /** Queue Manager 2 base address register */

 (uint32_t) 0xFFFFFFFF,

 /** Queue Manager 3 base address register */

 (uint32_t) 0xFFFFFFFF,

 },

};

/**

@}

*/

Table 17 Device-Specific CPPI Configuration File

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 72

QMSS device-specific global configuration parameters – qmss_device.c file:

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 73

/**

 * @file qmss_device.c

 *

 * @brief

 * This file contains the device specific configuration and initialization routines

 * for QMSS Low Level Driver.

 * \par

 * ==

 * @n (C) Copyright 2009, Texas Instruments, Inc.

 * @n Use of this software is controlled by the terms and conditions found

 * @n in the license agreement under which this software has been supplied.

 * ==

 * \par

 */

/* QMSS LLD includes */

#include <qmss_types.h>

/* CSL RL includes */

#include <ti/csl/cslr_device.h>

#include <ti/csl/cslr_qm_config.h>

#include <ti/csl/cslr_qm_descriptor_region_config.h>

#include <ti/csl/cslr_qm_queue_management.h>

#include <ti/csl/cslr_qm_queue_status_config.h>

#include <ti/csl/cslr_qm_intd.h>

#include <ti/csl/cslr_pdsp.h>

#include <ti/csl/csl_qm_queue.h>

/** @addtogroup QMSS_LLD_DATASTRUCT

@{

*/

/** @brief QMSS LLD initialization parameters */

/* TODO These values are according to Sim release. Not all are accurate */

Qmss_GlobalConfigParams qmssGblCfgParams[] =

{

 /** Maximum number of queue Managers */

 (uint32_t) 2u,

 /** Maximum number of queues */

 (uint32_t) 8192u,

 {

 /** Base queue number and Maximum supported low priority queues */

 {QMSS_LOW_PRIORITY_QUEUE_BASE, QMSS_MAX_LOW_PRIORITY_QUEUE},

 /** Base queue number and Maximum supported AIF queues */

 {QMSS_AIF_QUEUE_BASE, QMSS_MAX_AIF_QUEUE},

 /** Base queue number and Maximum supported PASS queues */

 {QMSS_PASS_QUEUE_BASE, QMSS_MAX_PASS_QUEUE},

 /** Base queue number and Maximum supported Intc Pend queues */

 {QMSS_INTC_QUEUE_BASE, QMSS_MAX_INTC_QUEUE},

 /** Base queue number and Maximum supported SRIO queues */

 {QMSS_SRIO_QUEUE_BASE, QMSS_MAX_SRIO_QUEUE},

 /** Base queue number and Maximum supported FFTC A queues */

 {QMSS_FFTC_A_QUEUE_BASE, QMSS_MAX_FFTC_A_QUEUE},

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 74

 /** Base queue number and Maximum supported FFTC B queues */

 {QMSS_FFTC_B_QUEUE_BASE, QMSS_MAX_FFTC_B_QUEUE},

 /** Base queue number and Maximum supported high priority queues */

 {QMSS_HIGH_PRIORITY_QUEUE_BASE, QMSS_MAX_HIGH_PRIORITY_QUEUE},

 /** Base queue number and Maximum supported starvation counter queues */

 {QMSS_STARVATION_COUNTER_QUEUE_BASE, QMSS_MAX_STARVATION_COUNTER_QUEUE},

 /** Base queue number and Maximum supported infrastructure queues */

 {QMSS_INFRASTRUCTURE_QUEUE_BASE, QMSS_MAX_INFRASTRUCTURE_QUEUE},

 /** Base queue number and Maximum supported traffic shaping queues */

 {QMSS_TRAFFIC_SHAPING_QUEUE_BASE, QMSS_MAX_TRAFFIC_SHAPING_QUEUE},

 /** Base queue number and Maximum supported general purpose queues */

 {QMSS_GENERAL_PURPOSE_QUEUE_BASE, QMSS_MAX_GENERAL_PURPOSE_QUEUE},

 /* Unused */

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 {0u, 0u},

 },

 /** Base address for the CPDMA overlay registers */

 /** QM Global Config registers */

 (void *) CSL_QM_SS_CFG_CONFIG_STARVATION_COUNTER_REGS,

 /** QM Descriptor Config registers */

 (void *) CSL_QM_SS_CFG_DESCRIPTION_REGS,

 /** QM queue Management registers */

 (void *) CSL_QM_SS_CFG_QM_QUEUE_DEQUEUE_REGS,

 /** QM queue Management Proxy registers */

 (void *) CSL_QM_SS_CFG_PROXY_QUEUE_DEQUEUE_REGS,

 /** QM queue status registers */

 (void *) CSL_QM_SS_CFG_QUE_PEEK_REGS,

 /** QM INTD registers */

 (void *) CSL_QM_SS_CFG_INTD_REGS,

 /** QM PDSP1 command register */

 {

 (void *) CSL_QM_SS_CFG_SCRACH_RAM1_REGS,

 /** QM PDSP2 command register */

 (void *) CSL_QM_SS_CFG_SCRACH_RAM2_REGS,

 },

 /** QM PDSP 1 control register */

 {

 (void *) CSL_QM_SS_CFG_ADSP1_REGS,

 /** QM PDSP 2 control register */

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 75

 (void *) CSL_QM_SS_CFG_ADSP2_REGS,

 },

 /** QM PDSP 1 IRAM register */

 {

 (void *) CSL_QM_SS_CFG_APDSP1_RAM_REGS,

 /** QM PDSP 2 IRAM register */

 (void *) CSL_QM_SS_CFG_APDSP2_RAM_REGS,

 },

 /** QM Status RAM */

 (void *) CSL_QM_SS_CFG_QM_STATUS_RAM_REGS,

 /** QM Linking RAM register */

 (void *) CSL_QM_SS_CFG_LINKING_RAM_REGS,

 /** QM McDMA register */

 (void *) CSL_QM_SS_CFG_MCDMA_REGS,

 /** QM Timer16 register */

 {

 (void *) CSL_QM_SS_CFG_TIMER1_REGS,

 (void *) CSL_QM_SS_CFG_TIMER2_REGS,

 },

 /** QM queue Management registers, accessed via DMA port */

 (void *) CSL_QM_SS_DATA_QM_QUEUE_DEQUEUE_REGS,

 /** QM queue Management Proxy registers, accessed via DMA port */

 (void *) CSL_QM_SS_DATA_PROXY_QUEUE_DEQUEUE_REGS,

};

/**

@}

*/

Table 18 Device-Specific QMSS Configuration File

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 76

CPPI Error Codes:

/** CPPI Low level Driver return and Error Codes */

/** CPPI successful return code */
#define CPPI_SOK 0
/** CPPI Error Base */
#define CPPI_LLD_EBASE (-128)
/** CPPI CPDMA not yet initialized */
#define CPPI_CPDMA_NOT_INITIALIZED CPPI_LLD_EBASE-1
/** CPPI invalid parameter */
#define CPPI_INVALID_PARAM CPPI_LLD_EBASE-2
/** CPPI Rx/Tx channel not yet enabled */
#define CPPI_CHANNEL_NOT_OPEN CPPI_LLD_EBASE-3
/** CPPI Rx flow not yet enabled */
#define CPPI_FLOW_NOT_OPEN CPPI_LLD_EBASE-4
/** CPPI Tx channels are still open. All Tx channels should be closed before calling
Cppi_close */
#define CPPI_TX_CHANNELS_NOT_CLOSED CPPI_LLD_EBASE-5
/** CPPI Rx channels are still open. All Rx channels should be closed before calling
Cppi_close */
#define CPPI_RX_CHANNELS_NOT_CLOSED CPPI_LLD_EBASE-6
/** CPPI Rx flows are still open. All Rx flows should be closed before calling Cppi_close
*/
#define CPPI_RX_FLOWS_NOT_CLOSED CPPI_LLD_EBASE-7
/** Queue Manager subsystem memory region not enabled */
#define CPPI_QMSS_MEMREGION_NOT_INITIALIZED CPPI_LLD_EBASE-8
/** Queue open error */
#define CPPI_QUEUE_OPEN_ERROR CPPI_LLD_EBASE-9
/** CPPI extended packet information block not present in descriptor */
#define CPPI_EPIB_NOT_PRESENT CPPI_LLD_EBASE-10
/** CPPI protocol specific data not present in descriptor */
#define CPPI_PSDATA_NOT_PRESENT CPPI_LLD_EBASE-11
/** CPPI CPDMA instances are still open. All CPDMA instances should be closed before
calling cppi_exit */
#define CPPI_CPDMA_NOT_CLOSED CPPI_LLD_EBASE-12

Table 19 CPPI Error Codes

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 77

QMSS Error Codes:

/** QMSS Low level Driver return and Error Codes */
/** QMSS successful return code */
#define QMSS_SOK 0
/** QMSS Error Base */
#define QMSS_LLD_EBASE (-128)
/** QMSS LLD invalid parameter */
#define QMSS_INVALID_PARAM QMSS_LLD_EBASE-1
/** QMSS LLD not initialized */
#define QMSS_NOT_INITIALIZED QMSS_LLD_EBASE-2
/** QMSS LLD queue open error */
#define QMSS_QUEUE_OPEN_ERROR QMSS_LLD_EBASE-3
/** QMSS memory region not initialized */
#define QMSS_MEMREGION_NOT_INITIALIZED QMSS_LLD_EBASE-4

/** QMSS memory region already initialized */

#define QMSS_MEMREGION_ALREADY_INITIALIZED QMSS_LLD_EBASE-5

/** QMSS memory region invalid parameter */

#define QMSS_MEMREGION_INVALID_PARAM QMSS_LLD_EBASE-6

/** QMSS maximum number of allowed descriptor are already configured */

#define QMSS_MAX_DESCRIPTORS_CONFIGURED QMSS_LLD_EBASE-7

/** QMSS Specified memory region index is invalid or no memory regions are available */

#define QMSS_MEMREGION_INVALID_INDEX QMSS_LLD_EBASE-8

/** QMSS memory region overlap */

#define QMSS_MEMREGION_OVERLAP QMSS_LLD_EBASE-9

/** QMSS PDSP firmware download failure */

#define QMSS_FIRMWARE_DOWNLOAD_FAILED QMSS_LLD_EBASE-10

Table 20 QMSS Error Codes

Texas Instruments Incorporated Software Design Specification

Revision A CPPI/QMSS LLD

 Page 78

QMSS Accumulator Return Codes:

/** QMSS accumulator return and Error Codes */

/** QMSS accumulator idle return code */

#define QMSS_ACC_IDLE 0

/** QMSS accumulator successful return code */

#define QMSS_ACC_SOK 1

/** QMSS accumulator invalid command return code */

#define QMSS_ACC_INVALID_COMMAND 2

/** QMSS accumulator invalid channel return code */

#define QMSS_ACC_INVALID_CHANNEL 3

/** QMSS accumulator channel not active return code */

#define QMSS_ACC_CHANNEL_NOT_ACTIVE 4

/** QMSS accumulator channel already active */

#define QMSS_ACC_CHANNEL_ALREADY_ACTIVE 5

/** QMSS accumulator invalid queue number */

#define QMSS_ACC_INVALID_QUEUE_NUMBER 6

Table 21 QMSS Accumulator Return Codes

