

CPPI LLD

Release Notes

Applies to Product Release: 01.00.02.02:
Publication Date: April 30, 2012

Texas Instruments, Incorporated

20450 Century Boulevard

Germantown, MD 20874 USA

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,

171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2011-12 Texas Instruments Incorporated - http://www.ti.com/

 ii

Contents

Overview .. 1

LLD Dependencies .. 1

New/Updated Features and Quality ... 1

Resolved Incident Reports (IR) .. 8

Known Issues/Limitations ... 8

Licensing ... 9

Delivery Package ... 9

Installation Instructions... 9

Directory structure .. 9

Customer Documentation List .. 10

 1

CPPI LLD version 01.00.02.02

Overview

This document provides the release information for the latest CPPI Low Level Driver which

should be used by drivers and application that interface with CPPI IP.

CPPI LLD module includes:

• Pre-compiled library for DSP (Big and Little) Endian of CPPI LLD.

• Source code.

• API reference guide

• Design Documentation

LLD Dependencies

LLD is dependent on following external components delivered in PDK package:

- CSL

- QMSS LLD

- RM LLD

New/Updated Features and Quality

This is an engineering release, tested by the development team.

Release 1.0.2.2

• Add 128 bytes of padding to Cppi_Object. This is necessary to ensure linker doesn’t

place an unrelated object in the same cache line as Cppi_Object.

Release 1.0.2.1

• CPPI manages its own heap. This allows CPPI to allocate 1K chunks of memory from

system heap then manage cache within its own sandbox. Memory is only released to

system when Cppi_exit() is called. This removes the restriction that CPPI have a dedicated

heap when using shared memory. The shared heap itself must still be shared memory

capable such that it manages the cache for its own internal structures, such as

HeapMemMP from SYS/BIOS. When running multicore, Osal_cppiCsEnter() must be

correctly implemented, such that only one core can touch any part of the cache-aligned 1K

chunks at any given time.

Release Notes

 2

• This also allows the use of static memory that can optionally passed in via Cppi_IntiCfg.

This may aid system integrators who don’t want to use any form of malloc().

Release 1.0.2.0

• Fixed multicore cache coherence and critical section issues. Please note the

documentation in CPPI_QMSS_LLD_SDS.pdf that requires that CPPI use a dedicated

heap when using shared memory for the channel heap.

Release 1.0.1.5

• Modified example project configuration file to support devices with fewer number of cores

Release 1.0.1.4

• Added support for Resource Manager LLD. For all existing applications there are no API

modifications required. The Cppi_startCfg API has been added to configure use of the RM

LLD if desired.

Release 1.0.1.3

• Release adds examples and unit test code to demonstrate Linux User Mode LLD usage for

ARM processor. Support only applicable for devices with ARM processor.

Release 1.0.1.2

• Release includes modifications to support User Mode access for ARM processor. Support

only applicable for devices with ARM processor.

Release 1.0.1.1

• Additional device support

Release 1.0.1.0

• SDOCM00085084 – Prefix listlib APIs in CPPI LLD to avoid conflicts with other listlib

APIs used in the system

• SDOCM00083379 – Compiler remarks in cppi_desc.h

Release 1.0.0.16

• Added auto generation of LLD version number and Makefile

• Fixed missing cache writeback in Cppi_channelClose() and Cppi_closeRxFlow() when the

channel is not freed due to additional references.

Release 1.0.0.15

• Updated cache invalidation and writeback OSAL APIs to use mfence. Added XMC

prefetch buffer invalidation.

Release 1.0.0.14

• Changes for limiting doxygen requirement only during the release

 3

• Copyright modification to TI BSD

Release 1.0.0.13

• Updated test code.

• Added project txt files to enable auto project creation for example and test projects

Release 1.0.0.12

• Queue Proxy is not modeled in the simulator. Added flag SIMULATOR_SUPPORT to

handle the unsupported feature in qmss_mgmt.h. Ensure the example and test projects

define this flag to differentiate between simulator and device. Pre-built library is compiled

with this flag turned off.

Release 1.0.0.11

• C66 Target support

• Modifications to the LLD to be device independent.
o CPPI API changed from

Cppi_Result Cppi_init (void);

to

o Cppi_Result Cppi_init (Cppi_GlobalConfigParams *cppiGblCfgParams);

o Link device specific file cppi_device.c in the driver/application.

o Add an external reference to device specific configuration

extern Cppi_GlobalConfigParams cppiGblCfgParams;

o Deprecated APIs Cppi_setCompletionTag() and Cppi_getCompletionTag()

o Deprecated rx_size_thresh3_en field from Cppi_RxFlowCfg data structure.

o Added new descriptor field manipulation APIs

o Cppi_setDataLen(), Cppi_getDataLen(), Cppi_setSoftwareInfo0(),

Cppi_getSoftwareInfo0(), Cppi_setSoftwareInfo1(), Cppi_getSoftwareInfo1(),

Cppi_setSoftwareInfo2(), Cppi_getSoftwareInfo2(),

Cppi_setOrigBufferpooIndex(), Cppi_getOrigBufferpooIndex(),

Cppi_incrementRefCount(), Cppi_decrementRefCount(), Cppi_getRefCount()

o Software workaround for PS location bug – The PS location is not updated correctly in

the host descriptor. Change the get Cppi_getPSData()API to workaround the above

issue. The API changed from

Cppi_Result Cppi_getPSData (Cppi_DescType descType, Cppi_Desc *descAddr,

uint8_t **dataAddr, uint32_t *dataLen)

To

static inline Cppi_Result Cppi_getPSData (Cppi_DescType descType,

Cppi_PSLoc location, Cppi_Desc *descAddr, uint8_t **dataAddr, uint32_t

*dataLen)

o Added new APIs to get LLD version ID and Version String

o uint32_t Cppi_getVersion (void);

o const char* Cppi_getVersionStr (void);

 4

Release 1.0.0.10

o Prebuilt libraries are both ELF and COFF. Examples and test projects are ELF only.

o Removed cppi instance count. Make sure the application calls Cppi_init()APIs once. When

using multicore application, application MUST provide synchronization between cores

such that slave cores wait on master core to finish Cppi_init() before calling Cppi_open()

API.

o An example is provided in “sample” example.

o Deprecated error return codes CPPI_ALREADY_INITIALIZED,

CPPI_NOT_INITIALIZED

o Added cache coherency hooks.

o Added cache coherency callouts for cache invalidation and writeback. The cache

hooks are only in control path. No cache coherency operations are performed in

data path.

o OSAL has been modified to add OSAL implementation of callouts for L1 and L2

caches (L2 is commented out right now). Refer to cppi_osal.h and sample_osal.c

When using CPPI in multicore application, the heap for CPPI LLD memory

allocation is placed in shared memory. This MUST be a separate heap used only by

CPPI to avoid false sharing issues when caches are enabled.

o ”sample” example has been modified to configure L2 caches and MPAX for

address translation. It is currently commented out under L2_CACHE define.

o Changed library optimization level from o3 to o2. Removed deprecated option ml3.

o Removed defines QT and QT_WORKAROUND from examples and test code.

Release 1.0.0.9

o Migration of LLD from COFF to ELF. Prebuilt libraries are ELF only.

Release 1.0.0.8

o Modifications to LLD to conform to CPPI 4.2.11 spec

o Changes to global CPPI configuration structure passed in Cppi_open API. Memset

the Cppi_CpDmaInitCfg configuration structure to zero if you don’t want to

change the default values for fields listed below.

� New timeoutCount variable is added to Cppi_CpDmaInitCfg to configure

timeout after buffer starvation.

� New writeFifoDepth variable is added to Cppi_CpDmaInitCfg to configure

write arbitration FIFO depth.

 5

� Configurable QM base address. Allows configuring of QM base addresses

in order to allow overlapping QMs.

o Receive flow configuration structure changes.

� The values that can be assigned to rx_dest_tag_lo_sel, rx_dest_tag_hi_sel,

rx_src_tag_lo_sel, rx_src_tag_hi_sel has changed. Please refer to

Cppi_RxFlowCfg structure for details

� When configuring rx_size_thresh0, rx_size_thresh1, rx_size_thresh2,

specify the actual packet size. The LLD will translate it to the configurable

value by right shifting the packet size.

� In order to avoid confusion when setting the threshold enable mask, the

configuration has changed.

rx_size_thresh_en is deprecated. 4 new fields rx_size_thresh0_en,

rx_size_thresh1_en, rx_size_thresh2_en, rx_size_thresh3_en are provided

to specify which thresholds must be enable. The LLD will calculate the

threshold mask.

o CPDMA loopback enable

� Added new APIs to get (Cppi_getCpdmaLoopback()) and set

(Cppi_setCpdmaLoopback()) CPDMA loopback enable bit.

o INTD is modeled in simulator. If you are using accumulator to generate interrupts, you

need to acknowledge them after processing in order to receive further interrupts.

 Qmss_ackInterrupt (cfg.channel, 1);
 Qmss_setEoiVector (Qmss_IntdInterruptType_HIGH, cfg.channel);

cfg.channel is the accumulator channel used. Refer to the API documentation for further

details.

 Modified examples and test project to remove QT define.

o Changed XDC tools version to 3.16.02.32 in examples and test projects.

o Changed sample project to use IPC version to 1.20.00.21

o Removed QT_WORKAROUND from examples for internal linking RAM use and

disabling accumulator.

Release 1.0.0.7

o Modified types from XDC to C99

o Changed all source, header, and example code to reflect CSL include path change.

Release 1.0.0.6

o This release is for workarounds for issues found during testing. The workarounds are

compiled under QT_WORKAROUND define.

 6

o The examples are test case are modified for QT. Define QT and QT_WORKAROUND

(defined by default) to run the examples and testcases on QT.

o Packets are not transmitted out when QM base address in CPPI is configured.

o Internal linking RAM causes CCS to hang. Use external(L2) linking RAM instead.

o Accumulator cannot be disabled. The PDSP firmware does not clear the command causing

the API to loop indefinitely.

o Monolithic packets are received with zero packet length. Data and protocol specific data

are not present in the received packet.

o Packet length is read as zero when descriptor is popped by reading register C and D.

Release 1.0.0.5

o Modifications to LLD to conform to CPPI 4.2.10 spec

o Changed on-chip field in the monolithic descriptor to return push policy. On-chip is

no longer supported.

� Moved returnPushPolicy from Cppi_HostDescCfg to Cppi_DescCfg.

o Changed maximum supported transmit channels for packet accelerator subsystem

(PASS) to 9.

Release 1.0.0.4

o Modified examples and test code to remove references deprecated API

Qmss_getQueuePendingStatus()

Release 1.0.0.3

o Modifications to LLD to conform to CPPI 4.2.9 spec

o Teardown is no longer supported.

� Removed enum Cppi_DescType_TEARDOWN.

� Removed teardown descriptor definition Cppi_TearDownDesc

� Removed API Cppi_getTdInfo(), used to get teardown information from

descriptor

� Removed free teardown descriptor queue information freeTdQueue from

configuration structure Cppi_CpDmaInitCfg

� Removed queue information tdQueue on which the teardown descriptor

will be queued from transmit channel configuration Cppi_TxChInitCfg

structure

o Changed Enum Cppi_CpDma_FFTC_CPDMA to include 2
nd
 instance of FFTC. The new

enums are Cppi_CpDma_FFTC_A_CPDMA and Cppi_CpDma_FFTC_B_CPDMA

 7

o Changed CPPI global configuration structure Cppi_GlobalConfigParams to include

FFTC_B instance

o Internal linking RAM use is supported. CPPI examples are modified to use internal linking

RAM. The same can be done in the application. LLD will configure linking RAM0 address

to internal linking RAM address if a value of zero is specified in linkingRAM0Base

parameter. LLD will configure linking RAM0 size to maximum internal linking RAM size

if a value of zero is specified in linkingRAM0Size parameter

o Device specific sample configuration is built within the driver. They are located within the

device directory. There is no need to add/link the file to the project. Remove

sample_cppi_cfg.c from example .project files. Remove external reference to

sample_cppiGblCfgParams.

o Device specific configuration parameter has been removed from init API. The API has

changed to

Cppi_Result Cppi_init (Void)

o Added queue manager base address to CPPI global configuration structure

Cppi_GlobalConfigParams.

o Following IRs against simulator are verified

Release 1.0.0.2

o Modifications to LLD to conform to CPPI 4.2.7 spec

o Rx flow configuration – Cppi_RxFlowCfg structure changes.

� Fields rx_swdb_present and rx_tstamp_present are combined and the new

field is called rx_einfo_present.

o Monolithic descriptor – Cppi_MonolithicDesc structure change

� Added a Reserved field to align the monolithic descriptor to 32 bytes when

optional data is present. The data offset should be increased by 4 bytes for

monolithic descriptors when the EPIB block is used.

o Transmit channel configuration – Cppi_TxChInitCfg structure change

� 3 new fields filterEPIB, filterPS and aifMonoMode must be initialized

when configuring a transmit channel.

o Setting original buffer information is decoupled from the Cppi_setData() API. A new API

Cppi_setOriginalBufInfo() is provided to set the original buffer information.

o The sample_cppiGblCfgParams structure in sample_cppi_cfg.c is updated for FFTC_B

defines.

o Shared memory allocation

o Shared memory cannot be allocated using the BIOS Memory_alloc() API. If the

CPPI resources such as channels, flows are opened from more than 1 core, the

handles must be allocated from shared memory. IPC package is used to allocate

 8

shared memory. The “sample” example project in CPPI LLD depicts the use

model.

Release 1.0.0.1

o Changed OSAL critical section APIs to be more generic.

Instead of passing the key as an input parameter to the enter function (as was previous

version), changed it such that OSAL creates the handle instead of the caller. OSAL creates

the unique handle in CS enter, handle is a return parameter. From the LLD perspective it is

an opaque handle that is passed to the CS exit function.

o Changed number of channels, flows from 128 to 129 for AIF CPDMA in

sample_cppiGblCfgParams(sample_cppi_cfg.c)

o CPPI LLD help integrated with the CCSv4 Eclipse Help subsystem

Release 1.0.0.0

o Initial release of low level driver

Resolved Incident Reports (IR)

Table 1 provides information on IR resolutions incorporated into this release.

Table 1 Resolved IRs for this Release

IR Parent/
Child Number

Severity
Level IR Description

SDOCM00091791 Major CPPI_LLD: padding needed for cppiObject

Known Issues/Limitations

IR Parent/
Child
Number

Severity
Level IR Description

BCG_IP_P.BT
S_pa_cdmahp
.401

Major
CDMAHP RX PS location bit is not updated in CPPI descriptor

 9

Licensing

Please refer to the software Manifest document for the details.

Delivery Package

There is no separate delivery package. The CPPI LLD is being delivered as part of PDK.

Installation Instructions

The LLD is currently bundled as part of Platform Development Kit (PDK). Refer installation

instruction to the release notes provided for PDK.

Directory structure

The following is the directory structure after the CPPI LLD package has been installed:

The following table explains each individual directory:

Directory Name Description

ti/drv/cppi

The top level directory contains the following:-

1. Environment configuration batch file

The file “setupenv.bat” is used to configure the build

environment for the CPPI low level driver.

2. XDC Build and Package files

These files (config.bld, package.xdc etc) are the XDC build

files which are used to create the CPPI package.

3. Exported Driver header file

Header files which are provided by the CPPI low level driver and

should be used by the application developers for driver

customization and usage.

ti/drv/cppi/build The directory contains internal XDC build related files which are used to

 10

create the CPPI low level driver package.

ti/drv/cppi/device The directory contains the device specific files for the CPPI low
level driver.

ti/drv/cppi/docs The directory contains the CPPI low level driver documentation.

ti/drv/cppi/example The “example” directory in the CPPI low level driver has the

infrastructure mode example.

ti/drv/cppi/include The “include” directory has private CPPI low level driver header files.

These files should not be used by application developers.

ti/drv/cppi/lib The “lib” folder has pre-built Big and Little Endian libraries for the

QMSS low level driver along with their code/data size information.

It also includes the makefile to build LLD for ARMv7 target

ti/drv/cppi/package Internal CPPI low level driver package files.

ti/drv/cppi/src Source code for the CPPI low level driver.

ti/drv/cppi/test The “test” directory in the CPPI low level driver has unit test cases

which are used by the development team to test the CPPI low level driver.

ti/drv/cppi/test2 The “test2” directory in the CPPI low level driver has unit test cases for

ARM Linux user space LLD which are used by the development team to

test the CPPI low level driver.

eclipse The “eclipse” directory has files required to integrate CPPI low level

driver documentation with Eclipse IDE’s Help Menu.

Customer Documentation List

Table 2 lists the documents that are accessible through the /docs folder on the product installation

CD or in the delivery package.

Table 2 Product Documentation included with this Release

Document # Document Title File Name

1 API documentation (generated by Doxygen) docs/cppilldDocs.chm

2 Design Document docs/CPPI_QMSS_LLD_SDS.pdf

3 Software Manifest docs/CPPI_LLD_SoftwareManifest.pdf

